Metamath Proof Explorer


Theorem merco1lem11

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem11
|- ( ( ph -> ps ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> ps ) )

Proof

Step Hyp Ref Expression
1 merco1lem5
 |-  ( ( ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) -> F. ) -> ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) )
2 merco1lem3
 |-  ( ( ( ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) -> F. ) -> ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) ) -> ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) )
3 1 2 ax-mp
 |-  ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) )
4 merco1lem4
 |-  ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) -> ( ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) )
5 3 4 ax-mp
 |-  ( ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) )
6 merco1lem5
 |-  ( ( ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) -> ( ( ch -> ( ph -> ta ) ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) )
7 5 6 ax-mp
 |-  ( ( ch -> ( ph -> ta ) ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) )
8 merco1lem4
 |-  ( ( ( ch -> ( ph -> ta ) ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) -> ( ( ph -> ta ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) )
9 7 8 ax-mp
 |-  ( ( ph -> ta ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) )
10 merco1
 |-  ( ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> ph ) -> ( ( ph -> ps ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> ps ) ) )
11 merco1lem2
 |-  ( ( ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> ph ) -> ( ( ph -> ps ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> ps ) ) ) -> ( ( ( ph -> ta ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) -> ( ( ph -> ps ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> ps ) ) ) )
12 10 11 ax-mp
 |-  ( ( ( ph -> ta ) -> ( ( ( ( ps -> ph ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> F. ) ) -> F. ) -> F. ) ) -> ( ( ph -> ps ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> ps ) ) )
13 9 12 ax-mp
 |-  ( ( ph -> ps ) -> ( ( ( ch -> ( ph -> ta ) ) -> F. ) -> ps ) )