Metamath Proof Explorer


Theorem merco1lem15

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem15
|- ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) )

Proof

Step Hyp Ref Expression
1 merco1lem14
 |-  ( ( ( ( ph -> ps ) -> ps ) -> ( ch -> ps ) ) -> ( ph -> ( ch -> ps ) ) )
2 merco1lem13
 |-  ( ( ( ( ( ph -> ps ) -> ps ) -> ( ch -> ps ) ) -> ( ph -> ( ch -> ps ) ) ) -> ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph -> ps ) -> ( ph -> ( ch -> ps ) ) )