Metamath Proof Explorer


Theorem merco1lem16

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 18-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem16
|- ( ( ( ph -> ( ps -> ch ) ) -> ta ) -> ( ( ph -> ch ) -> ta ) )

Proof

Step Hyp Ref Expression
1 merco1lem15
 |-  ( ( ph -> ch ) -> ( ph -> ( ps -> ch ) ) )
2 merco1lem11
 |-  ( ( ( ph -> ch ) -> ( ph -> ( ps -> ch ) ) ) -> ( ( ( ( ta -> ph ) -> ( ( ph -> ch ) -> F. ) ) -> F. ) -> ( ph -> ( ps -> ch ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ( ta -> ph ) -> ( ( ph -> ch ) -> F. ) ) -> F. ) -> ( ph -> ( ps -> ch ) ) )
4 merco1
 |-  ( ( ( ( ( ta -> ph ) -> ( ( ph -> ch ) -> F. ) ) -> F. ) -> ( ph -> ( ps -> ch ) ) ) -> ( ( ( ph -> ( ps -> ch ) ) -> ta ) -> ( ( ph -> ch ) -> ta ) ) )
5 3 4 ax-mp
 |-  ( ( ( ph -> ( ps -> ch ) ) -> ta ) -> ( ( ph -> ch ) -> ta ) )