Step |
Hyp |
Ref |
Expression |
1 |
|
retbwax2 |
|- ( ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> F. ) -> ( ( ch -> ph ) -> ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> F. ) ) ) |
2 |
|
merco1 |
|- ( ( ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> F. ) -> ( ( ch -> ph ) -> ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> F. ) ) ) -> ( ( ( ( ch -> ph ) -> ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> F. ) ) -> ps ) -> ( ph -> ps ) ) ) |
3 |
1 2
|
ax-mp |
|- ( ( ( ( ch -> ph ) -> ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> F. ) ) -> ps ) -> ( ph -> ps ) ) |
4 |
|
merco1 |
|- ( ( ( ( ( ch -> ph ) -> ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> F. ) ) -> ps ) -> ( ph -> ps ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> ch ) ) ) |
5 |
3 4
|
ax-mp |
|- ( ( ( ph -> ps ) -> ch ) -> ( ( ( ps -> ta ) -> ( ph -> F. ) ) -> ch ) ) |