Metamath Proof Explorer


Theorem merco1lem5

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem5
|- ( ( ( ( ph -> F. ) -> ch ) -> ta ) -> ( ph -> ta ) )

Proof

Step Hyp Ref Expression
1 merco1lem4
 |-  ( ( ( ( ta -> ph ) -> ( ph -> F. ) ) -> ch ) -> ( ( ph -> F. ) -> ch ) )
2 merco1
 |-  ( ( ( ( ( ta -> ph ) -> ( ph -> F. ) ) -> ch ) -> ( ( ph -> F. ) -> ch ) ) -> ( ( ( ( ph -> F. ) -> ch ) -> ta ) -> ( ph -> ta ) ) )
3 1 2 ax-mp
 |-  ( ( ( ( ph -> F. ) -> ch ) -> ta ) -> ( ph -> ta ) )