Metamath Proof Explorer


Theorem merco1lem8

Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 . (Contributed by Anthony Hart, 17-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco1lem8
|- ( ph -> ( ( ps -> ( ps -> ch ) ) -> ( ps -> ch ) ) )

Proof

Step Hyp Ref Expression
1 merco1lem6
 |-  ( ( ps -> ( ps -> ch ) ) -> ( ( ps -> ( ps -> ch ) ) -> ( ps -> ch ) ) )
2 merco1lem6
 |-  ( ( ( ps -> ( ps -> ch ) ) -> ( ( ps -> ( ps -> ch ) ) -> ( ps -> ch ) ) ) -> ( ph -> ( ( ps -> ( ps -> ch ) ) -> ( ps -> ch ) ) ) )
3 1 2 ax-mp
 |-  ( ph -> ( ( ps -> ( ps -> ch ) ) -> ( ps -> ch ) ) )