Metamath Proof Explorer


Theorem merco2

Description: A single axiom for propositional calculus discovered by C. A. Meredith.

This axiom has 19 symbols, sans auxiliaries. See notes in merco1 . (Contributed by Anthony Hart, 7-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion merco2
|- ( ( ( ph -> ps ) -> ( ( F. -> ch ) -> th ) ) -> ( ( th -> ph ) -> ( ta -> ( et -> ph ) ) ) )

Proof

Step Hyp Ref Expression
1 falim
 |-  ( F. -> ch )
2 pm2.04
 |-  ( ( ( ph -> ps ) -> ( ( F. -> ch ) -> th ) ) -> ( ( F. -> ch ) -> ( ( ph -> ps ) -> th ) ) )
3 1 2 mpi
 |-  ( ( ( ph -> ps ) -> ( ( F. -> ch ) -> th ) ) -> ( ( ph -> ps ) -> th ) )
4 jarl
 |-  ( ( ( ph -> ps ) -> th ) -> ( -. ph -> th ) )
5 idd
 |-  ( ( ( ph -> ps ) -> th ) -> ( th -> th ) )
6 4 5 jad
 |-  ( ( ( ph -> ps ) -> th ) -> ( ( ph -> th ) -> th ) )
7 looinv
 |-  ( ( ( ph -> th ) -> th ) -> ( ( th -> ph ) -> ph ) )
8 3 6 7 3syl
 |-  ( ( ( ph -> ps ) -> ( ( F. -> ch ) -> th ) ) -> ( ( th -> ph ) -> ph ) )
9 8 a1dd
 |-  ( ( ( ph -> ps ) -> ( ( F. -> ch ) -> th ) ) -> ( ( th -> ph ) -> ( ta -> ph ) ) )
10 9 a1i
 |-  ( et -> ( ( ( ph -> ps ) -> ( ( F. -> ch ) -> th ) ) -> ( ( th -> ph ) -> ( ta -> ph ) ) ) )
11 10 com4l
 |-  ( ( ( ph -> ps ) -> ( ( F. -> ch ) -> th ) ) -> ( ( th -> ph ) -> ( ta -> ( et -> ph ) ) ) )