| Step |
Hyp |
Ref |
Expression |
| 1 |
|
merco2 |
|- ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) |
| 2 |
|
merco2 |
|- ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) |
| 3 |
|
mercolem3 |
|- ( ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) |
| 5 |
|
mercolem7 |
|- ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) |
| 6 |
|
mercolem7 |
|- ( ( ( ph -> ps ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) -> ( ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) ) |
| 7 |
5 6
|
ax-mp |
|- ( ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) |
| 8 |
|
merco2 |
|- ( ( ( ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( F. -> ph ) -> ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) ) ) -> ( ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) ) ) ) |
| 9 |
7 8
|
ax-mp |
|- ( ( ( ( ( ph -> ch ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( F. -> ph ) -> ps ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) ) ) |
| 10 |
4 9
|
ax-mp |
|- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) ) |
| 11 |
1 10
|
ax-mp |
|- ( ( ( ( ph -> ph ) -> ( ( F. -> ph ) -> ph ) ) -> ( ( ph -> ph ) -> ( ph -> ( ph -> ph ) ) ) ) -> ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) ) |
| 12 |
1 11
|
ax-mp |
|- ( ( ph -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( ta -> ( th -> ( ph -> ch ) ) ) ) ) |