Description: Step 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | merlem8 | |- ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | meredith | |- ( ( ( ( ( ph -> ph ) -> ( -. ph -> -. ph ) ) -> ph ) -> ph ) -> ( ( ph -> ph ) -> ( ph -> ph ) ) )  | 
						|
| 2 | merlem7 | |- ( ( ( ( ( ( ph -> ph ) -> ( -. ph -> -. ph ) ) -> ph ) -> ph ) -> ( ( ph -> ph ) -> ( ph -> ph ) ) ) -> ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) ) )  | 
						|
| 3 | 1 2 | ax-mp | |- ( ( ( ps -> ch ) -> th ) -> ( ( ( ch -> ta ) -> ( -. th -> -. ps ) ) -> th ) )  |