| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. ZZ ) |
| 2 |
|
2nn0 |
|- 2 e. NN0 |
| 3 |
2
|
numexp1 |
|- ( 2 ^ 1 ) = 2 |
| 4 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 5 |
3 4
|
eqtri |
|- ( 2 ^ 1 ) = ( 1 + 1 ) |
| 6 |
|
prmuz2 |
|- ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) ) |
| 7 |
6
|
adantl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) ) |
| 8 |
|
eluz2gt1 |
|- ( ( ( 2 ^ P ) - 1 ) e. ( ZZ>= ` 2 ) -> 1 < ( ( 2 ^ P ) - 1 ) ) |
| 9 |
7 8
|
syl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 < ( ( 2 ^ P ) - 1 ) ) |
| 10 |
|
1red |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 e. RR ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
11
|
a1i |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 2 e. RR ) |
| 13 |
|
2ne0 |
|- 2 =/= 0 |
| 14 |
13
|
a1i |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 2 =/= 0 ) |
| 15 |
12 14 1
|
reexpclzd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ P ) e. RR ) |
| 16 |
10 10 15
|
ltaddsubd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( ( 1 + 1 ) < ( 2 ^ P ) <-> 1 < ( ( 2 ^ P ) - 1 ) ) ) |
| 17 |
9 16
|
mpbird |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 + 1 ) < ( 2 ^ P ) ) |
| 18 |
5 17
|
eqbrtrid |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 2 ^ 1 ) < ( 2 ^ P ) ) |
| 19 |
|
1zzd |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 e. ZZ ) |
| 20 |
|
1lt2 |
|- 1 < 2 |
| 21 |
20
|
a1i |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 < 2 ) |
| 22 |
12 19 1 21
|
ltexp2d |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( 1 < P <-> ( 2 ^ 1 ) < ( 2 ^ P ) ) ) |
| 23 |
18 22
|
mpbird |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> 1 < P ) |
| 24 |
|
eluz2b1 |
|- ( P e. ( ZZ>= ` 2 ) <-> ( P e. ZZ /\ 1 < P ) ) |
| 25 |
1 23 24
|
sylanbrc |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. ( ZZ>= ` 2 ) ) |
| 26 |
|
simpllr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. Prime ) |
| 27 |
|
prmnn |
|- ( ( ( 2 ^ P ) - 1 ) e. Prime -> ( ( 2 ^ P ) - 1 ) e. NN ) |
| 28 |
26 27
|
syl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. NN ) |
| 29 |
28
|
nncnd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. CC ) |
| 30 |
|
2nn |
|- 2 e. NN |
| 31 |
|
elfzuz |
|- ( k e. ( 2 ... ( P - 1 ) ) -> k e. ( ZZ>= ` 2 ) ) |
| 32 |
31
|
ad2antlr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. ( ZZ>= ` 2 ) ) |
| 33 |
|
eluz2nn |
|- ( k e. ( ZZ>= ` 2 ) -> k e. NN ) |
| 34 |
32 33
|
syl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. NN ) |
| 35 |
34
|
nnnn0d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. NN0 ) |
| 36 |
|
nnexpcl |
|- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
| 37 |
30 35 36
|
sylancr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. NN ) |
| 38 |
37
|
nnzd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. ZZ ) |
| 39 |
|
peano2zm |
|- ( ( 2 ^ k ) e. ZZ -> ( ( 2 ^ k ) - 1 ) e. ZZ ) |
| 40 |
38 39
|
syl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. ZZ ) |
| 41 |
40
|
zred |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. CC ) |
| 43 |
|
0red |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 0 e. RR ) |
| 44 |
|
1red |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 e. RR ) |
| 45 |
|
0lt1 |
|- 0 < 1 |
| 46 |
45
|
a1i |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 0 < 1 ) |
| 47 |
|
eluz2gt1 |
|- ( k e. ( ZZ>= ` 2 ) -> 1 < k ) |
| 48 |
32 47
|
syl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < k ) |
| 49 |
11
|
a1i |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 2 e. RR ) |
| 50 |
|
1zzd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 e. ZZ ) |
| 51 |
|
elfzelz |
|- ( k e. ( 2 ... ( P - 1 ) ) -> k e. ZZ ) |
| 52 |
51
|
ad2antlr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. ZZ ) |
| 53 |
20
|
a1i |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < 2 ) |
| 54 |
49 50 52 53
|
ltexp2d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 < k <-> ( 2 ^ 1 ) < ( 2 ^ k ) ) ) |
| 55 |
48 54
|
mpbid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ 1 ) < ( 2 ^ k ) ) |
| 56 |
5 55
|
eqbrtrrid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 + 1 ) < ( 2 ^ k ) ) |
| 57 |
37
|
nnred |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. RR ) |
| 58 |
44 44 57
|
ltaddsubd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 1 + 1 ) < ( 2 ^ k ) <-> 1 < ( ( 2 ^ k ) - 1 ) ) ) |
| 59 |
56 58
|
mpbid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < ( ( 2 ^ k ) - 1 ) ) |
| 60 |
43 44 41 46 59
|
lttrd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 0 < ( ( 2 ^ k ) - 1 ) ) |
| 61 |
|
elnnz |
|- ( ( ( 2 ^ k ) - 1 ) e. NN <-> ( ( ( 2 ^ k ) - 1 ) e. ZZ /\ 0 < ( ( 2 ^ k ) - 1 ) ) ) |
| 62 |
40 60 61
|
sylanbrc |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. NN ) |
| 63 |
62
|
nnne0d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) =/= 0 ) |
| 64 |
29 42 63
|
divcan2d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) = ( ( 2 ^ P ) - 1 ) ) |
| 65 |
64 26
|
eqeltrd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) e. Prime ) |
| 66 |
|
eluz2b2 |
|- ( ( ( 2 ^ k ) - 1 ) e. ( ZZ>= ` 2 ) <-> ( ( ( 2 ^ k ) - 1 ) e. NN /\ 1 < ( ( 2 ^ k ) - 1 ) ) ) |
| 67 |
62 59 66
|
sylanbrc |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) e. ( ZZ>= ` 2 ) ) |
| 68 |
37
|
nncnd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) e. CC ) |
| 69 |
|
ax-1cn |
|- 1 e. CC |
| 70 |
|
subeq0 |
|- ( ( ( 2 ^ k ) e. CC /\ 1 e. CC ) -> ( ( ( 2 ^ k ) - 1 ) = 0 <-> ( 2 ^ k ) = 1 ) ) |
| 71 |
68 69 70
|
sylancl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) = 0 <-> ( 2 ^ k ) = 1 ) ) |
| 72 |
71
|
necon3bid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ k ) - 1 ) =/= 0 <-> ( 2 ^ k ) =/= 1 ) ) |
| 73 |
63 72
|
mpbid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) =/= 1 ) |
| 74 |
|
simpr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k || P ) |
| 75 |
|
eluz2nn |
|- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
| 76 |
25 75
|
syl |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. NN ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> P e. NN ) |
| 78 |
|
nndivdvds |
|- ( ( P e. NN /\ k e. NN ) -> ( k || P <-> ( P / k ) e. NN ) ) |
| 79 |
77 34 78
|
syl2anc |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( k || P <-> ( P / k ) e. NN ) ) |
| 80 |
74 79
|
mpbid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( P / k ) e. NN ) |
| 81 |
80
|
nnnn0d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( P / k ) e. NN0 ) |
| 82 |
68 73 81
|
geoser |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> sum_ n e. ( 0 ... ( ( P / k ) - 1 ) ) ( ( 2 ^ k ) ^ n ) = ( ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) / ( 1 - ( 2 ^ k ) ) ) ) |
| 83 |
15
|
ad2antrr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ P ) e. RR ) |
| 84 |
83
|
recnd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ P ) e. CC ) |
| 85 |
|
negsubdi2 |
|- ( ( ( 2 ^ P ) e. CC /\ 1 e. CC ) -> -u ( ( 2 ^ P ) - 1 ) = ( 1 - ( 2 ^ P ) ) ) |
| 86 |
84 69 85
|
sylancl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -u ( ( 2 ^ P ) - 1 ) = ( 1 - ( 2 ^ P ) ) ) |
| 87 |
77
|
nncnd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> P e. CC ) |
| 88 |
34
|
nncnd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k e. CC ) |
| 89 |
34
|
nnne0d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k =/= 0 ) |
| 90 |
87 88 89
|
divcan2d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( k x. ( P / k ) ) = P ) |
| 91 |
90
|
oveq2d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ ( k x. ( P / k ) ) ) = ( 2 ^ P ) ) |
| 92 |
49
|
recnd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 2 e. CC ) |
| 93 |
92 81 35
|
expmuld |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ ( k x. ( P / k ) ) ) = ( ( 2 ^ k ) ^ ( P / k ) ) ) |
| 94 |
91 93
|
eqtr3d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ P ) = ( ( 2 ^ k ) ^ ( P / k ) ) ) |
| 95 |
94
|
oveq2d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 - ( 2 ^ P ) ) = ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) ) |
| 96 |
86 95
|
eqtrd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -u ( ( 2 ^ P ) - 1 ) = ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) ) |
| 97 |
|
negsubdi2 |
|- ( ( ( 2 ^ k ) e. CC /\ 1 e. CC ) -> -u ( ( 2 ^ k ) - 1 ) = ( 1 - ( 2 ^ k ) ) ) |
| 98 |
68 69 97
|
sylancl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -u ( ( 2 ^ k ) - 1 ) = ( 1 - ( 2 ^ k ) ) ) |
| 99 |
96 98
|
oveq12d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( -u ( ( 2 ^ P ) - 1 ) / -u ( ( 2 ^ k ) - 1 ) ) = ( ( 1 - ( ( 2 ^ k ) ^ ( P / k ) ) ) / ( 1 - ( 2 ^ k ) ) ) ) |
| 100 |
29 42 63
|
div2negd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( -u ( ( 2 ^ P ) - 1 ) / -u ( ( 2 ^ k ) - 1 ) ) = ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) |
| 101 |
82 99 100
|
3eqtr2d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> sum_ n e. ( 0 ... ( ( P / k ) - 1 ) ) ( ( 2 ^ k ) ^ n ) = ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) |
| 102 |
|
fzfid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 0 ... ( ( P / k ) - 1 ) ) e. Fin ) |
| 103 |
|
elfznn0 |
|- ( n e. ( 0 ... ( ( P / k ) - 1 ) ) -> n e. NN0 ) |
| 104 |
|
zexpcl |
|- ( ( ( 2 ^ k ) e. ZZ /\ n e. NN0 ) -> ( ( 2 ^ k ) ^ n ) e. ZZ ) |
| 105 |
38 103 104
|
syl2an |
|- ( ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) /\ n e. ( 0 ... ( ( P / k ) - 1 ) ) ) -> ( ( 2 ^ k ) ^ n ) e. ZZ ) |
| 106 |
102 105
|
fsumzcl |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> sum_ n e. ( 0 ... ( ( P / k ) - 1 ) ) ( ( 2 ^ k ) ^ n ) e. ZZ ) |
| 107 |
101 106
|
eqeltrrd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ZZ ) |
| 108 |
42
|
mullidd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 x. ( ( 2 ^ k ) - 1 ) ) = ( ( 2 ^ k ) - 1 ) ) |
| 109 |
|
2z |
|- 2 e. ZZ |
| 110 |
|
elfzm11 |
|- ( ( 2 e. ZZ /\ P e. ZZ ) -> ( k e. ( 2 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 2 <_ k /\ k < P ) ) ) |
| 111 |
109 1 110
|
sylancr |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> ( k e. ( 2 ... ( P - 1 ) ) <-> ( k e. ZZ /\ 2 <_ k /\ k < P ) ) ) |
| 112 |
111
|
biimpa |
|- ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) -> ( k e. ZZ /\ 2 <_ k /\ k < P ) ) |
| 113 |
112
|
simp3d |
|- ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) -> k < P ) |
| 114 |
113
|
adantr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> k < P ) |
| 115 |
1
|
ad2antrr |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> P e. ZZ ) |
| 116 |
49 52 115 53
|
ltexp2d |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( k < P <-> ( 2 ^ k ) < ( 2 ^ P ) ) ) |
| 117 |
114 116
|
mpbid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 2 ^ k ) < ( 2 ^ P ) ) |
| 118 |
57 83 44 117
|
ltsub1dd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ k ) - 1 ) < ( ( 2 ^ P ) - 1 ) ) |
| 119 |
108 118
|
eqbrtrd |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( 1 x. ( ( 2 ^ k ) - 1 ) ) < ( ( 2 ^ P ) - 1 ) ) |
| 120 |
28
|
nnred |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 2 ^ P ) - 1 ) e. RR ) |
| 121 |
|
ltmuldiv |
|- ( ( 1 e. RR /\ ( ( 2 ^ P ) - 1 ) e. RR /\ ( ( ( 2 ^ k ) - 1 ) e. RR /\ 0 < ( ( 2 ^ k ) - 1 ) ) ) -> ( ( 1 x. ( ( 2 ^ k ) - 1 ) ) < ( ( 2 ^ P ) - 1 ) <-> 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) ) |
| 122 |
44 120 41 60 121
|
syl112anc |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( 1 x. ( ( 2 ^ k ) - 1 ) ) < ( ( 2 ^ P ) - 1 ) <-> 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) ) |
| 123 |
119 122
|
mpbid |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) |
| 124 |
|
eluz2b1 |
|- ( ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ( ZZ>= ` 2 ) <-> ( ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ZZ /\ 1 < ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) ) |
| 125 |
107 123 124
|
sylanbrc |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ( ZZ>= ` 2 ) ) |
| 126 |
|
nprm |
|- ( ( ( ( 2 ^ k ) - 1 ) e. ( ZZ>= ` 2 ) /\ ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) e. ( ZZ>= ` 2 ) ) -> -. ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) e. Prime ) |
| 127 |
67 125 126
|
syl2anc |
|- ( ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) /\ k || P ) -> -. ( ( ( 2 ^ k ) - 1 ) x. ( ( ( 2 ^ P ) - 1 ) / ( ( 2 ^ k ) - 1 ) ) ) e. Prime ) |
| 128 |
65 127
|
pm2.65da |
|- ( ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) /\ k e. ( 2 ... ( P - 1 ) ) ) -> -. k || P ) |
| 129 |
128
|
ralrimiva |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> A. k e. ( 2 ... ( P - 1 ) ) -. k || P ) |
| 130 |
|
isprm3 |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ A. k e. ( 2 ... ( P - 1 ) ) -. k || P ) ) |
| 131 |
25 129 130
|
sylanbrc |
|- ( ( P e. ZZ /\ ( ( 2 ^ P ) - 1 ) e. Prime ) -> P e. Prime ) |