| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mertens.1 |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
| 2 |
|
mertens.2 |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 3 |
|
mertens.3 |
|- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
| 4 |
|
mertens.4 |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 5 |
|
mertens.5 |
|- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
| 6 |
|
mertens.6 |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 7 |
|
mertens.7 |
|- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
| 8 |
|
mertens.8 |
|- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
| 9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 10 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 11 |
|
seqex |
|- seq 0 ( + , H ) e. _V |
| 12 |
11
|
a1i |
|- ( ph -> seq 0 ( + , H ) e. _V ) |
| 13 |
|
fzfid |
|- ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
| 14 |
|
simpl |
|- ( ( ph /\ k e. NN0 ) -> ph ) |
| 15 |
|
elfznn0 |
|- ( j e. ( 0 ... k ) -> j e. NN0 ) |
| 16 |
14 15 3
|
syl2an |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A e. CC ) |
| 17 |
|
fveq2 |
|- ( i = ( k - j ) -> ( G ` i ) = ( G ` ( k - j ) ) ) |
| 18 |
17
|
eleq1d |
|- ( i = ( k - j ) -> ( ( G ` i ) e. CC <-> ( G ` ( k - j ) ) e. CC ) ) |
| 19 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 20 |
19
|
ralrimiva |
|- ( ph -> A. k e. NN0 ( G ` k ) e. CC ) |
| 21 |
|
fveq2 |
|- ( k = i -> ( G ` k ) = ( G ` i ) ) |
| 22 |
21
|
eleq1d |
|- ( k = i -> ( ( G ` k ) e. CC <-> ( G ` i ) e. CC ) ) |
| 23 |
22
|
cbvralvw |
|- ( A. k e. NN0 ( G ` k ) e. CC <-> A. i e. NN0 ( G ` i ) e. CC ) |
| 24 |
20 23
|
sylib |
|- ( ph -> A. i e. NN0 ( G ` i ) e. CC ) |
| 25 |
24
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A. i e. NN0 ( G ` i ) e. CC ) |
| 26 |
|
fznn0sub |
|- ( j e. ( 0 ... k ) -> ( k - j ) e. NN0 ) |
| 27 |
26
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. NN0 ) |
| 28 |
18 25 27
|
rspcdva |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) e. CC ) |
| 29 |
16 28
|
mulcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A x. ( G ` ( k - j ) ) ) e. CC ) |
| 30 |
13 29
|
fsumcl |
|- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) |
| 31 |
6 30
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) e. CC ) |
| 32 |
9 10 31
|
serf |
|- ( ph -> seq 0 ( + , H ) : NN0 --> CC ) |
| 33 |
32
|
ffvelcdmda |
|- ( ( ph /\ m e. NN0 ) -> ( seq 0 ( + , H ) ` m ) e. CC ) |
| 34 |
1
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( F ` j ) = A ) |
| 35 |
2
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 36 |
3
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> A e. CC ) |
| 37 |
4
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 38 |
5
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> B e. CC ) |
| 39 |
6
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 40 |
7
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> seq 0 ( + , K ) e. dom ~~> ) |
| 41 |
8
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 42 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
| 43 |
|
fveq2 |
|- ( l = k -> ( G ` l ) = ( G ` k ) ) |
| 44 |
43
|
cbvsumv |
|- sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) |
| 45 |
|
fvoveq1 |
|- ( i = n -> ( ZZ>= ` ( i + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
| 46 |
45
|
sumeq1d |
|- ( i = n -> sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 47 |
44 46
|
eqtrid |
|- ( i = n -> sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 48 |
47
|
fveq2d |
|- ( i = n -> ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 49 |
48
|
eqeq2d |
|- ( i = n -> ( u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 50 |
49
|
cbvrexvw |
|- ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 51 |
|
eqeq1 |
|- ( u = z -> ( u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 52 |
51
|
rexbidv |
|- ( u = z -> ( E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 53 |
50 52
|
bitrid |
|- ( u = z -> ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 54 |
53
|
cbvabv |
|- { u | E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) } = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
| 55 |
|
fveq2 |
|- ( i = j -> ( K ` i ) = ( K ` j ) ) |
| 56 |
55
|
cbvsumv |
|- sum_ i e. NN0 ( K ` i ) = sum_ j e. NN0 ( K ` j ) |
| 57 |
56
|
oveq1i |
|- ( sum_ i e. NN0 ( K ` i ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) |
| 58 |
57
|
oveq2i |
|- ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) = ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 59 |
58
|
breq2i |
|- ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 60 |
|
fveq2 |
|- ( i = k -> ( G ` i ) = ( G ` k ) ) |
| 61 |
60
|
cbvsumv |
|- sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) |
| 62 |
|
fvoveq1 |
|- ( u = n -> ( ZZ>= ` ( u + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
| 63 |
62
|
sumeq1d |
|- ( u = n -> sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 64 |
61 63
|
eqtrid |
|- ( u = n -> sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 65 |
64
|
fveq2d |
|- ( u = n -> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 66 |
65
|
breq1d |
|- ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 67 |
59 66
|
bitrid |
|- ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 68 |
67
|
cbvralvw |
|- ( A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 69 |
68
|
anbi2i |
|- ( ( s e. NN /\ A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) ) <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 70 |
34 35 36 37 38 39 40 41 42 54 69
|
mertenslem2 |
|- ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) |
| 71 |
|
eluznn0 |
|- ( ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) -> m e. NN0 ) |
| 72 |
|
fzfid |
|- ( ( ph /\ m e. NN0 ) -> ( 0 ... m ) e. Fin ) |
| 73 |
|
simpll |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ph ) |
| 74 |
|
elfznn0 |
|- ( j e. ( 0 ... m ) -> j e. NN0 ) |
| 75 |
74
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> j e. NN0 ) |
| 76 |
9 10 4 5 8
|
isumcl |
|- ( ph -> sum_ k e. NN0 B e. CC ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. NN0 B e. CC ) |
| 78 |
1 3
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) e. CC ) |
| 79 |
77 78
|
mulcld |
|- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) |
| 80 |
73 75 79
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) |
| 81 |
|
fzfid |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( m - j ) ) e. Fin ) |
| 82 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ph ) |
| 83 |
74
|
ad2antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> j e. NN0 ) |
| 84 |
82 83 3
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> A e. CC ) |
| 85 |
|
elfznn0 |
|- ( k e. ( 0 ... ( m - j ) ) -> k e. NN0 ) |
| 86 |
85
|
adantl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> k e. NN0 ) |
| 87 |
82 86 19
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) e. CC ) |
| 88 |
84 87
|
mulcld |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( A x. ( G ` k ) ) e. CC ) |
| 89 |
81 88
|
fsumcl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) e. CC ) |
| 90 |
72 80 89
|
fsumsub |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) |
| 91 |
73 75 3
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> A e. CC ) |
| 92 |
76
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B e. CC ) |
| 93 |
81 87
|
fsumcl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) e. CC ) |
| 94 |
91 92 93
|
subdid |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) ) |
| 95 |
|
eqid |
|- ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) |
| 96 |
|
fznn0sub |
|- ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) |
| 97 |
96
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) |
| 98 |
|
peano2nn0 |
|- ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) |
| 99 |
97 98
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 100 |
99
|
nn0zd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
| 101 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
| 102 |
|
eluznn0 |
|- ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 103 |
99 102
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 104 |
101 103 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 105 |
101 103 5
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
| 106 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 107 |
73 4
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 108 |
73 5
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> B e. CC ) |
| 109 |
107 108
|
eqeltrd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 110 |
9 99 109
|
iserex |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) |
| 111 |
106 110
|
mpbid |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
| 112 |
95 100 104 105 111
|
isumcl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
| 113 |
9 95 99 107 108 106
|
isumsplit |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 114 |
97
|
nn0cnd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. CC ) |
| 115 |
|
ax-1cn |
|- 1 e. CC |
| 116 |
|
pncan |
|- ( ( ( m - j ) e. CC /\ 1 e. CC ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) |
| 117 |
114 115 116
|
sylancl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) |
| 118 |
117
|
oveq2d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) = ( 0 ... ( m - j ) ) ) |
| 119 |
118
|
sumeq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) B ) |
| 120 |
82 86 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) = B ) |
| 121 |
120
|
sumeq2dv |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) = sum_ k e. ( 0 ... ( m - j ) ) B ) |
| 122 |
119 121
|
eqtr4d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) |
| 123 |
122
|
oveq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 124 |
113 123
|
eqtrd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 125 |
93 112 124
|
mvrladdd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
| 126 |
125
|
oveq2d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 127 |
3 77
|
mulcomd |
|- ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. A ) ) |
| 128 |
1
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) = ( sum_ k e. NN0 B x. A ) ) |
| 129 |
127 128
|
eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 130 |
73 75 129
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 131 |
81 91 87
|
fsummulc2 |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) |
| 132 |
130 131
|
oveq12d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) |
| 133 |
94 126 132
|
3eqtr3rd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 134 |
133
|
sumeq2dv |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 135 |
|
fveq2 |
|- ( n = j -> ( F ` n ) = ( F ` j ) ) |
| 136 |
135
|
oveq2d |
|- ( n = j -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 137 |
|
eqid |
|- ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) = ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) |
| 138 |
|
ovex |
|- ( sum_ k e. NN0 B x. ( F ` j ) ) e. _V |
| 139 |
136 137 138
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 140 |
75 139
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
| 141 |
|
simpr |
|- ( ( ph /\ m e. NN0 ) -> m e. NN0 ) |
| 142 |
141 9
|
eleqtrdi |
|- ( ( ph /\ m e. NN0 ) -> m e. ( ZZ>= ` 0 ) ) |
| 143 |
140 142 80
|
fsumser |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) ) |
| 144 |
|
fveq2 |
|- ( n = k -> ( G ` n ) = ( G ` k ) ) |
| 145 |
144
|
oveq2d |
|- ( n = k -> ( A x. ( G ` n ) ) = ( A x. ( G ` k ) ) ) |
| 146 |
|
fveq2 |
|- ( n = ( k - j ) -> ( G ` n ) = ( G ` ( k - j ) ) ) |
| 147 |
146
|
oveq2d |
|- ( n = ( k - j ) -> ( A x. ( G ` n ) ) = ( A x. ( G ` ( k - j ) ) ) ) |
| 148 |
88
|
anasss |
|- ( ( ( ph /\ m e. NN0 ) /\ ( j e. ( 0 ... m ) /\ k e. ( 0 ... ( m - j ) ) ) ) -> ( A x. ( G ` k ) ) e. CC ) |
| 149 |
145 147 148
|
fsum0diag2 |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 150 |
|
simpll |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ph ) |
| 151 |
|
elfznn0 |
|- ( k e. ( 0 ... m ) -> k e. NN0 ) |
| 152 |
151
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> k e. NN0 ) |
| 153 |
150 152 6
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 154 |
150 152 30
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) |
| 155 |
153 142 154
|
fsumser |
|- ( ( ph /\ m e. NN0 ) -> sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) = ( seq 0 ( + , H ) ` m ) ) |
| 156 |
149 155
|
eqtrd |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = ( seq 0 ( + , H ) ` m ) ) |
| 157 |
143 156
|
oveq12d |
|- ( ( ph /\ m e. NN0 ) -> ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) |
| 158 |
90 134 157
|
3eqtr3rd |
|- ( ( ph /\ m e. NN0 ) -> ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 159 |
158
|
fveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) = ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 160 |
159
|
breq1d |
|- ( ( ph /\ m e. NN0 ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 161 |
71 160
|
sylan2 |
|- ( ( ph /\ ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 162 |
161
|
anassrs |
|- ( ( ( ph /\ y e. NN0 ) /\ m e. ( ZZ>= ` y ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 163 |
162
|
ralbidva |
|- ( ( ph /\ y e. NN0 ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 164 |
163
|
rexbidva |
|- ( ph -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 165 |
164
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
| 166 |
70 165
|
mpbird |
|- ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) |
| 167 |
166
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) |
| 168 |
1
|
fveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` ( F ` j ) ) = ( abs ` A ) ) |
| 169 |
2 168
|
eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` ( F ` j ) ) ) |
| 170 |
9 10 169 78 7
|
abscvgcvg |
|- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
| 171 |
9 10 1 3 170
|
isumclim2 |
|- ( ph -> seq 0 ( + , F ) ~~> sum_ j e. NN0 A ) |
| 172 |
78
|
ralrimiva |
|- ( ph -> A. j e. NN0 ( F ` j ) e. CC ) |
| 173 |
|
fveq2 |
|- ( j = m -> ( F ` j ) = ( F ` m ) ) |
| 174 |
173
|
eleq1d |
|- ( j = m -> ( ( F ` j ) e. CC <-> ( F ` m ) e. CC ) ) |
| 175 |
174
|
rspccva |
|- ( ( A. j e. NN0 ( F ` j ) e. CC /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
| 176 |
172 175
|
sylan |
|- ( ( ph /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
| 177 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
| 178 |
177
|
oveq2d |
|- ( n = m -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
| 179 |
|
ovex |
|- ( sum_ k e. NN0 B x. ( F ` m ) ) e. _V |
| 180 |
178 137 179
|
fvmpt |
|- ( m e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
| 181 |
180
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
| 182 |
9 10 76 171 176 181
|
isermulc2 |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) ) |
| 183 |
9 10 1 3 170
|
isumcl |
|- ( ph -> sum_ j e. NN0 A e. CC ) |
| 184 |
76 183
|
mulcomd |
|- ( ph -> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) = ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |
| 185 |
182 184
|
breqtrd |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |
| 186 |
9 10 12 33 167 185
|
2clim |
|- ( ph -> seq 0 ( + , H ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |