Step |
Hyp |
Ref |
Expression |
1 |
|
mertens.1 |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
2 |
|
mertens.2 |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
3 |
|
mertens.3 |
|- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
4 |
|
mertens.4 |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
5 |
|
mertens.5 |
|- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
6 |
|
mertens.6 |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
7 |
|
mertens.7 |
|- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
8 |
|
mertens.8 |
|- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
9 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
10 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
11 |
|
seqex |
|- seq 0 ( + , H ) e. _V |
12 |
11
|
a1i |
|- ( ph -> seq 0 ( + , H ) e. _V ) |
13 |
|
fzfid |
|- ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
14 |
|
simpl |
|- ( ( ph /\ k e. NN0 ) -> ph ) |
15 |
|
elfznn0 |
|- ( j e. ( 0 ... k ) -> j e. NN0 ) |
16 |
14 15 3
|
syl2an |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A e. CC ) |
17 |
|
fveq2 |
|- ( i = ( k - j ) -> ( G ` i ) = ( G ` ( k - j ) ) ) |
18 |
17
|
eleq1d |
|- ( i = ( k - j ) -> ( ( G ` i ) e. CC <-> ( G ` ( k - j ) ) e. CC ) ) |
19 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
20 |
19
|
ralrimiva |
|- ( ph -> A. k e. NN0 ( G ` k ) e. CC ) |
21 |
|
fveq2 |
|- ( k = i -> ( G ` k ) = ( G ` i ) ) |
22 |
21
|
eleq1d |
|- ( k = i -> ( ( G ` k ) e. CC <-> ( G ` i ) e. CC ) ) |
23 |
22
|
cbvralvw |
|- ( A. k e. NN0 ( G ` k ) e. CC <-> A. i e. NN0 ( G ` i ) e. CC ) |
24 |
20 23
|
sylib |
|- ( ph -> A. i e. NN0 ( G ` i ) e. CC ) |
25 |
24
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A. i e. NN0 ( G ` i ) e. CC ) |
26 |
|
fznn0sub |
|- ( j e. ( 0 ... k ) -> ( k - j ) e. NN0 ) |
27 |
26
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. NN0 ) |
28 |
18 25 27
|
rspcdva |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) e. CC ) |
29 |
16 28
|
mulcld |
|- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A x. ( G ` ( k - j ) ) ) e. CC ) |
30 |
13 29
|
fsumcl |
|- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) |
31 |
6 30
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) e. CC ) |
32 |
9 10 31
|
serf |
|- ( ph -> seq 0 ( + , H ) : NN0 --> CC ) |
33 |
32
|
ffvelrnda |
|- ( ( ph /\ m e. NN0 ) -> ( seq 0 ( + , H ) ` m ) e. CC ) |
34 |
1
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( F ` j ) = A ) |
35 |
2
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
36 |
3
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> A e. CC ) |
37 |
4
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
38 |
5
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> B e. CC ) |
39 |
6
|
adantlr |
|- ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
40 |
7
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> seq 0 ( + , K ) e. dom ~~> ) |
41 |
8
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> seq 0 ( + , G ) e. dom ~~> ) |
42 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
43 |
|
fveq2 |
|- ( l = k -> ( G ` l ) = ( G ` k ) ) |
44 |
43
|
cbvsumv |
|- sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) |
45 |
|
fvoveq1 |
|- ( i = n -> ( ZZ>= ` ( i + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
46 |
45
|
sumeq1d |
|- ( i = n -> sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
47 |
44 46
|
eqtrid |
|- ( i = n -> sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
48 |
47
|
fveq2d |
|- ( i = n -> ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
49 |
48
|
eqeq2d |
|- ( i = n -> ( u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
50 |
49
|
cbvrexvw |
|- ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
51 |
|
eqeq1 |
|- ( u = z -> ( u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
52 |
51
|
rexbidv |
|- ( u = z -> ( E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
53 |
50 52
|
syl5bb |
|- ( u = z -> ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
54 |
53
|
cbvabv |
|- { u | E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) } = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
55 |
|
fveq2 |
|- ( i = j -> ( K ` i ) = ( K ` j ) ) |
56 |
55
|
cbvsumv |
|- sum_ i e. NN0 ( K ` i ) = sum_ j e. NN0 ( K ` j ) |
57 |
56
|
oveq1i |
|- ( sum_ i e. NN0 ( K ` i ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) |
58 |
57
|
oveq2i |
|- ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) = ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
59 |
58
|
breq2i |
|- ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
60 |
|
fveq2 |
|- ( i = k -> ( G ` i ) = ( G ` k ) ) |
61 |
60
|
cbvsumv |
|- sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) |
62 |
|
fvoveq1 |
|- ( u = n -> ( ZZ>= ` ( u + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
63 |
62
|
sumeq1d |
|- ( u = n -> sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
64 |
61 63
|
eqtrid |
|- ( u = n -> sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
65 |
64
|
fveq2d |
|- ( u = n -> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
66 |
65
|
breq1d |
|- ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
67 |
59 66
|
syl5bb |
|- ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
68 |
67
|
cbvralvw |
|- ( A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
69 |
68
|
anbi2i |
|- ( ( s e. NN /\ A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) ) <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
70 |
34 35 36 37 38 39 40 41 42 54 69
|
mertenslem2 |
|- ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) |
71 |
|
eluznn0 |
|- ( ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) -> m e. NN0 ) |
72 |
|
fzfid |
|- ( ( ph /\ m e. NN0 ) -> ( 0 ... m ) e. Fin ) |
73 |
|
simpll |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ph ) |
74 |
|
elfznn0 |
|- ( j e. ( 0 ... m ) -> j e. NN0 ) |
75 |
74
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> j e. NN0 ) |
76 |
9 10 4 5 8
|
isumcl |
|- ( ph -> sum_ k e. NN0 B e. CC ) |
77 |
76
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. NN0 B e. CC ) |
78 |
1 3
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) e. CC ) |
79 |
77 78
|
mulcld |
|- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) |
80 |
73 75 79
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) |
81 |
|
fzfid |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( m - j ) ) e. Fin ) |
82 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ph ) |
83 |
74
|
ad2antlr |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> j e. NN0 ) |
84 |
82 83 3
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> A e. CC ) |
85 |
|
elfznn0 |
|- ( k e. ( 0 ... ( m - j ) ) -> k e. NN0 ) |
86 |
85
|
adantl |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> k e. NN0 ) |
87 |
82 86 19
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) e. CC ) |
88 |
84 87
|
mulcld |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( A x. ( G ` k ) ) e. CC ) |
89 |
81 88
|
fsumcl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) e. CC ) |
90 |
72 80 89
|
fsumsub |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) |
91 |
73 75 3
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> A e. CC ) |
92 |
76
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B e. CC ) |
93 |
81 87
|
fsumcl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) e. CC ) |
94 |
91 92 93
|
subdid |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) ) |
95 |
|
eqid |
|- ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) |
96 |
|
fznn0sub |
|- ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) |
97 |
96
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) |
98 |
|
peano2nn0 |
|- ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) |
99 |
97 98
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
100 |
99
|
nn0zd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
101 |
|
simplll |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
102 |
|
eluznn0 |
|- ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
103 |
99 102
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
104 |
101 103 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
105 |
101 103 5
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
106 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
107 |
73 4
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
108 |
73 5
|
sylan |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> B e. CC ) |
109 |
107 108
|
eqeltrd |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
110 |
9 99 109
|
iserex |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) |
111 |
106 110
|
mpbid |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
112 |
95 100 104 105 111
|
isumcl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
113 |
9 95 99 107 108 106
|
isumsplit |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
114 |
97
|
nn0cnd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. CC ) |
115 |
|
ax-1cn |
|- 1 e. CC |
116 |
|
pncan |
|- ( ( ( m - j ) e. CC /\ 1 e. CC ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) |
117 |
114 115 116
|
sylancl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) |
118 |
117
|
oveq2d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) = ( 0 ... ( m - j ) ) ) |
119 |
118
|
sumeq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) B ) |
120 |
82 86 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) = B ) |
121 |
120
|
sumeq2dv |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) = sum_ k e. ( 0 ... ( m - j ) ) B ) |
122 |
119 121
|
eqtr4d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) |
123 |
122
|
oveq1d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
124 |
113 123
|
eqtrd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
125 |
93 112 124
|
mvrladdd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
126 |
125
|
oveq2d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
127 |
3 77
|
mulcomd |
|- ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. A ) ) |
128 |
1
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) = ( sum_ k e. NN0 B x. A ) ) |
129 |
127 128
|
eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
130 |
73 75 129
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
131 |
81 91 87
|
fsummulc2 |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) |
132 |
130 131
|
oveq12d |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) |
133 |
94 126 132
|
3eqtr3rd |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
134 |
133
|
sumeq2dv |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
135 |
|
fveq2 |
|- ( n = j -> ( F ` n ) = ( F ` j ) ) |
136 |
135
|
oveq2d |
|- ( n = j -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
137 |
|
eqid |
|- ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) = ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) |
138 |
|
ovex |
|- ( sum_ k e. NN0 B x. ( F ` j ) ) e. _V |
139 |
136 137 138
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
140 |
75 139
|
syl |
|- ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) |
141 |
|
simpr |
|- ( ( ph /\ m e. NN0 ) -> m e. NN0 ) |
142 |
141 9
|
eleqtrdi |
|- ( ( ph /\ m e. NN0 ) -> m e. ( ZZ>= ` 0 ) ) |
143 |
140 142 80
|
fsumser |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) ) |
144 |
|
fveq2 |
|- ( n = k -> ( G ` n ) = ( G ` k ) ) |
145 |
144
|
oveq2d |
|- ( n = k -> ( A x. ( G ` n ) ) = ( A x. ( G ` k ) ) ) |
146 |
|
fveq2 |
|- ( n = ( k - j ) -> ( G ` n ) = ( G ` ( k - j ) ) ) |
147 |
146
|
oveq2d |
|- ( n = ( k - j ) -> ( A x. ( G ` n ) ) = ( A x. ( G ` ( k - j ) ) ) ) |
148 |
88
|
anasss |
|- ( ( ( ph /\ m e. NN0 ) /\ ( j e. ( 0 ... m ) /\ k e. ( 0 ... ( m - j ) ) ) ) -> ( A x. ( G ` k ) ) e. CC ) |
149 |
145 147 148
|
fsum0diag2 |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
150 |
|
simpll |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ph ) |
151 |
|
elfznn0 |
|- ( k e. ( 0 ... m ) -> k e. NN0 ) |
152 |
151
|
adantl |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> k e. NN0 ) |
153 |
150 152 6
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
154 |
150 152 30
|
syl2anc |
|- ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) |
155 |
153 142 154
|
fsumser |
|- ( ( ph /\ m e. NN0 ) -> sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) = ( seq 0 ( + , H ) ` m ) ) |
156 |
149 155
|
eqtrd |
|- ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = ( seq 0 ( + , H ) ` m ) ) |
157 |
143 156
|
oveq12d |
|- ( ( ph /\ m e. NN0 ) -> ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) |
158 |
90 134 157
|
3eqtr3rd |
|- ( ( ph /\ m e. NN0 ) -> ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
159 |
158
|
fveq2d |
|- ( ( ph /\ m e. NN0 ) -> ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) = ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
160 |
159
|
breq1d |
|- ( ( ph /\ m e. NN0 ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
161 |
71 160
|
sylan2 |
|- ( ( ph /\ ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
162 |
161
|
anassrs |
|- ( ( ( ph /\ y e. NN0 ) /\ m e. ( ZZ>= ` y ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
163 |
162
|
ralbidva |
|- ( ( ph /\ y e. NN0 ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
164 |
163
|
rexbidva |
|- ( ph -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
165 |
164
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) |
166 |
70 165
|
mpbird |
|- ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) |
167 |
166
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) |
168 |
1
|
fveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` ( F ` j ) ) = ( abs ` A ) ) |
169 |
2 168
|
eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` ( F ` j ) ) ) |
170 |
9 10 169 78 7
|
abscvgcvg |
|- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
171 |
9 10 1 3 170
|
isumclim2 |
|- ( ph -> seq 0 ( + , F ) ~~> sum_ j e. NN0 A ) |
172 |
78
|
ralrimiva |
|- ( ph -> A. j e. NN0 ( F ` j ) e. CC ) |
173 |
|
fveq2 |
|- ( j = m -> ( F ` j ) = ( F ` m ) ) |
174 |
173
|
eleq1d |
|- ( j = m -> ( ( F ` j ) e. CC <-> ( F ` m ) e. CC ) ) |
175 |
174
|
rspccva |
|- ( ( A. j e. NN0 ( F ` j ) e. CC /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
176 |
172 175
|
sylan |
|- ( ( ph /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
177 |
|
fveq2 |
|- ( n = m -> ( F ` n ) = ( F ` m ) ) |
178 |
177
|
oveq2d |
|- ( n = m -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
179 |
|
ovex |
|- ( sum_ k e. NN0 B x. ( F ` m ) ) e. _V |
180 |
178 137 179
|
fvmpt |
|- ( m e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
181 |
180
|
adantl |
|- ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) |
182 |
9 10 76 171 176 181
|
isermulc2 |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) ) |
183 |
9 10 1 3 170
|
isumcl |
|- ( ph -> sum_ j e. NN0 A e. CC ) |
184 |
76 183
|
mulcomd |
|- ( ph -> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) = ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |
185 |
182 184
|
breqtrd |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |
186 |
9 10 12 33 167 185
|
2clim |
|- ( ph -> seq 0 ( + , H ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |