| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mertens.1 |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
| 2 |
|
mertens.2 |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 3 |
|
mertens.3 |
|- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
| 4 |
|
mertens.4 |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 5 |
|
mertens.5 |
|- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
| 6 |
|
mertens.6 |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 7 |
|
mertens.7 |
|- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
| 8 |
|
mertens.8 |
|- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
| 9 |
|
mertens.9 |
|- ( ph -> E e. RR+ ) |
| 10 |
|
mertens.10 |
|- T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
| 11 |
|
mertens.11 |
|- ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 12 |
|
mertens.12 |
|- ( ph -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 13 |
|
mertens.13 |
|- ( ph -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
| 14 |
12
|
simpld |
|- ( ph -> ps ) |
| 15 |
14 11
|
sylib |
|- ( ph -> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 16 |
15
|
simpld |
|- ( ph -> s e. NN ) |
| 17 |
16
|
nnnn0d |
|- ( ph -> s e. NN0 ) |
| 18 |
12
|
simprd |
|- ( ph -> ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 19 |
18
|
simpld |
|- ( ph -> t e. NN0 ) |
| 20 |
17 19
|
nn0addcld |
|- ( ph -> ( s + t ) e. NN0 ) |
| 21 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) e. Fin ) |
| 22 |
|
simpl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ph ) |
| 23 |
|
elfznn0 |
|- ( j e. ( 0 ... m ) -> j e. NN0 ) |
| 24 |
22 23 3
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> A e. CC ) |
| 25 |
|
eqid |
|- ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) |
| 26 |
|
fznn0sub |
|- ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) |
| 27 |
26
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) |
| 28 |
|
peano2nn0 |
|- ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) |
| 29 |
27 28
|
syl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 30 |
29
|
nn0zd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
| 31 |
|
simplll |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
| 32 |
|
eluznn0 |
|- ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 33 |
29 32
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 34 |
31 33 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 35 |
31 33 5
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
| 36 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 37 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 38 |
|
simpll |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ph ) |
| 39 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 40 |
38 39
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 41 |
37 29 40
|
iserex |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) |
| 42 |
36 41
|
mpbid |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
| 43 |
25 30 34 35 42
|
isumcl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
| 44 |
24 43
|
mulcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) |
| 45 |
21 44
|
fsumcl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) |
| 46 |
45
|
abscld |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 47 |
44
|
abscld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 48 |
21 47
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 49 |
9
|
rpred |
|- ( ph -> E e. RR ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. RR ) |
| 51 |
21 44
|
fsumabs |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 52 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) e. Fin ) |
| 53 |
17
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. NN0 ) |
| 54 |
53
|
nn0ge0d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 <_ s ) |
| 55 |
|
eluzelz |
|- ( m e. ( ZZ>= ` ( s + t ) ) -> m e. ZZ ) |
| 56 |
55
|
adantl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ZZ ) |
| 57 |
56
|
zred |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. RR ) |
| 58 |
53
|
nn0red |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. RR ) |
| 59 |
57 58
|
subge02d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 <_ s <-> ( m - s ) <_ m ) ) |
| 60 |
54 59
|
mpbid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) <_ m ) |
| 61 |
53 37
|
eleqtrdi |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( ZZ>= ` 0 ) ) |
| 62 |
16
|
nnzd |
|- ( ph -> s e. ZZ ) |
| 63 |
|
uzid |
|- ( s e. ZZ -> s e. ( ZZ>= ` s ) ) |
| 64 |
62 63
|
syl |
|- ( ph -> s e. ( ZZ>= ` s ) ) |
| 65 |
|
uzaddcl |
|- ( ( s e. ( ZZ>= ` s ) /\ t e. NN0 ) -> ( s + t ) e. ( ZZ>= ` s ) ) |
| 66 |
64 19 65
|
syl2anc |
|- ( ph -> ( s + t ) e. ( ZZ>= ` s ) ) |
| 67 |
|
eqid |
|- ( ZZ>= ` s ) = ( ZZ>= ` s ) |
| 68 |
67
|
uztrn2 |
|- ( ( ( s + t ) e. ( ZZ>= ` s ) /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) |
| 69 |
66 68
|
sylan |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) |
| 70 |
|
elfzuzb |
|- ( s e. ( 0 ... m ) <-> ( s e. ( ZZ>= ` 0 ) /\ m e. ( ZZ>= ` s ) ) ) |
| 71 |
61 69 70
|
sylanbrc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( 0 ... m ) ) |
| 72 |
|
fznn0sub2 |
|- ( s e. ( 0 ... m ) -> ( m - s ) e. ( 0 ... m ) ) |
| 73 |
71 72
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( 0 ... m ) ) |
| 74 |
|
elfzelz |
|- ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. ZZ ) |
| 75 |
73 74
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ZZ ) |
| 76 |
|
eluz |
|- ( ( ( m - s ) e. ZZ /\ m e. ZZ ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) |
| 77 |
75 56 76
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) |
| 78 |
60 77
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` ( m - s ) ) ) |
| 79 |
|
fzss2 |
|- ( m e. ( ZZ>= ` ( m - s ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) |
| 80 |
78 79
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) |
| 81 |
80
|
sselda |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ( 0 ... m ) ) |
| 82 |
3
|
abscld |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 83 |
22 23 82
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` A ) e. RR ) |
| 84 |
43
|
abscld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
| 85 |
83 84
|
remulcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 86 |
81 85
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 87 |
52 86
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 88 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) e. Fin ) |
| 89 |
|
elfznn0 |
|- ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. NN0 ) |
| 90 |
73 89
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. NN0 ) |
| 91 |
|
peano2nn0 |
|- ( ( m - s ) e. NN0 -> ( ( m - s ) + 1 ) e. NN0 ) |
| 92 |
90 91
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. NN0 ) |
| 93 |
92 37
|
eleqtrdi |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) ) |
| 94 |
|
fzss1 |
|- ( ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) |
| 95 |
93 94
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) |
| 96 |
95
|
sselda |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( 0 ... m ) ) |
| 97 |
96 85
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 98 |
88 97
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
| 99 |
9
|
rphalfcld |
|- ( ph -> ( E / 2 ) e. RR+ ) |
| 100 |
99
|
rpred |
|- ( ph -> ( E / 2 ) e. RR ) |
| 101 |
100
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. RR ) |
| 102 |
|
elfznn0 |
|- ( j e. ( 0 ... ( m - s ) ) -> j e. NN0 ) |
| 103 |
22 102 82
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. RR ) |
| 104 |
52 103
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR ) |
| 105 |
104 101
|
remulcld |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR ) |
| 106 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 107 |
|
eqidd |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( K ` j ) ) |
| 108 |
2 82
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) e. RR ) |
| 109 |
37 106 107 108 7
|
isumrecl |
|- ( ph -> sum_ j e. NN0 ( K ` j ) e. RR ) |
| 110 |
3
|
absge0d |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 111 |
110 2
|
breqtrrd |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( K ` j ) ) |
| 112 |
37 106 107 108 7 111
|
isumge0 |
|- ( ph -> 0 <_ sum_ j e. NN0 ( K ` j ) ) |
| 113 |
109 112
|
ge0p1rpd |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
| 115 |
105 114
|
rerpdivcld |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
| 116 |
99 113
|
rpdivcld |
|- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR+ ) |
| 117 |
116
|
rpred |
|- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
| 118 |
117
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
| 119 |
103 118
|
remulcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) e. RR ) |
| 120 |
81 30
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
| 121 |
|
simplll |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
| 122 |
81 29
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 123 |
122 32
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 124 |
121 123 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 125 |
121 123 5
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
| 126 |
81 42
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
| 127 |
25 120 124 125 126
|
isumcl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
| 128 |
127
|
abscld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
| 129 |
82 110
|
jca |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 130 |
22 102 129
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 131 |
124
|
sumeq2dv |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
| 132 |
131
|
fveq2d |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 133 |
|
fvoveq1 |
|- ( n = ( m - j ) -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) ) |
| 134 |
133
|
sumeq1d |
|- ( n = ( m - j ) -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) |
| 135 |
134
|
fveq2d |
|- ( n = ( m - j ) -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) |
| 136 |
135
|
breq1d |
|- ( n = ( m - j ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 137 |
15
|
simprd |
|- ( ph -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 138 |
137
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 139 |
|
elfzelz |
|- ( j e. ( 0 ... ( m - s ) ) -> j e. ZZ ) |
| 140 |
139
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ZZ ) |
| 141 |
140
|
zred |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. RR ) |
| 142 |
55
|
ad2antlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. ZZ ) |
| 143 |
142
|
zred |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. RR ) |
| 144 |
62
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. ZZ ) |
| 145 |
144
|
zred |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. RR ) |
| 146 |
|
elfzle2 |
|- ( j e. ( 0 ... ( m - s ) ) -> j <_ ( m - s ) ) |
| 147 |
146
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j <_ ( m - s ) ) |
| 148 |
141 143 145 147
|
lesubd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s <_ ( m - j ) ) |
| 149 |
142 140
|
zsubcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ZZ ) |
| 150 |
|
eluz |
|- ( ( s e. ZZ /\ ( m - j ) e. ZZ ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) |
| 151 |
144 149 150
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) |
| 152 |
148 151
|
mpbird |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ( ZZ>= ` s ) ) |
| 153 |
136 138 152
|
rspcdva |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 154 |
132 153
|
eqbrtrrd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 155 |
128 118 154
|
ltled |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 156 |
|
lemul2a |
|- ( ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 157 |
128 118 130 155 156
|
syl31anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 158 |
52 86 119 157
|
fsumle |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 159 |
104
|
recnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. CC ) |
| 160 |
99
|
rpcnd |
|- ( ph -> ( E / 2 ) e. CC ) |
| 161 |
160
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. CC ) |
| 162 |
|
peano2re |
|- ( sum_ j e. NN0 ( K ` j ) e. RR -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
| 163 |
109 162
|
syl |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
| 164 |
163
|
recnd |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) |
| 165 |
164
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) |
| 166 |
113
|
rpne0d |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) |
| 167 |
166
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) |
| 168 |
159 161 165 167
|
divassd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 169 |
|
fveq2 |
|- ( n = j -> ( K ` n ) = ( K ` j ) ) |
| 170 |
169
|
cbvsumv |
|- sum_ n e. NN0 ( K ` n ) = sum_ j e. NN0 ( K ` j ) |
| 171 |
170
|
oveq1i |
|- ( sum_ n e. NN0 ( K ` n ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) |
| 172 |
171
|
oveq2i |
|- ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) = ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 173 |
172 116
|
eqeltrid |
|- ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. RR+ ) |
| 174 |
173
|
rpcnd |
|- ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) |
| 176 |
82
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. CC ) |
| 177 |
22 102 176
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. CC ) |
| 178 |
52 175 177
|
fsummulc1 |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) ) |
| 179 |
172
|
oveq2i |
|- ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 180 |
172
|
oveq2i |
|- ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 181 |
180
|
a1i |
|- ( j e. ( 0 ... ( m - s ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 182 |
181
|
sumeq2i |
|- sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 183 |
178 179 182
|
3eqtr3g |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 184 |
168 183
|
eqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 185 |
158 184
|
breqtrrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 186 |
109
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) e. RR ) |
| 187 |
163
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
| 188 |
|
0zd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 e. ZZ ) |
| 189 |
|
fz0ssnn0 |
|- ( 0 ... ( m - s ) ) C_ NN0 |
| 190 |
189
|
a1i |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ NN0 ) |
| 191 |
2
|
adantlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 192 |
82
|
adantlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 193 |
110
|
adantlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 194 |
7
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> seq 0 ( + , K ) e. dom ~~> ) |
| 195 |
37 188 52 190 191 192 193 194
|
isumless |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( abs ` A ) ) |
| 196 |
2
|
sumeq2dv |
|- ( ph -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) |
| 197 |
196
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) |
| 198 |
195 197
|
breqtrrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( K ` j ) ) |
| 199 |
109
|
ltp1d |
|- ( ph -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 200 |
199
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 201 |
104 186 187 198 200
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
| 202 |
99
|
rpregt0d |
|- ( ph -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) |
| 203 |
202
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) |
| 204 |
|
ltmul1 |
|- ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR /\ ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
| 205 |
104 187 203 204
|
syl3anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
| 206 |
201 205
|
mpbid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) |
| 207 |
113
|
rpregt0d |
|- ( ph -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 208 |
207
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 209 |
|
ltdivmul |
|- ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR /\ ( E / 2 ) e. RR /\ ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
| 210 |
105 101 208 209
|
syl3anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
| 211 |
206 210
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) ) |
| 212 |
87 115 101 185 211
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) |
| 213 |
13
|
simprd |
|- ( ph -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
| 214 |
|
suprcl |
|- ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) -> sup ( T , RR , < ) e. RR ) |
| 215 |
213 214
|
syl |
|- ( ph -> sup ( T , RR , < ) e. RR ) |
| 216 |
100 215
|
remulcld |
|- ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) e. RR ) |
| 217 |
13
|
simpld |
|- ( ph -> 0 <_ sup ( T , RR , < ) ) |
| 218 |
215 217
|
ge0p1rpd |
|- ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR+ ) |
| 219 |
216 218
|
rerpdivcld |
|- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 220 |
219
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 221 |
16
|
nnrpd |
|- ( ph -> s e. RR+ ) |
| 222 |
99 221
|
rpdivcld |
|- ( ph -> ( ( E / 2 ) / s ) e. RR+ ) |
| 223 |
222 218
|
rpdivcld |
|- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR+ ) |
| 224 |
223
|
rpred |
|- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 225 |
224 215
|
remulcld |
|- ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) |
| 226 |
225
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) |
| 227 |
|
simpll |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ph ) |
| 228 |
96 23
|
syl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. NN0 ) |
| 229 |
227 228 82
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) e. RR ) |
| 230 |
224
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
| 231 |
227 228 2
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) = ( abs ` A ) ) |
| 232 |
|
fveq2 |
|- ( m = j -> ( K ` m ) = ( K ` j ) ) |
| 233 |
232
|
breq1d |
|- ( m = j -> ( ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 234 |
18
|
simprd |
|- ( ph -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 235 |
234
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 236 |
|
elfzuz |
|- ( j e. ( ( ( m - s ) + 1 ) ... m ) -> j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) ) |
| 237 |
|
eluzle |
|- ( m e. ( ZZ>= ` ( s + t ) ) -> ( s + t ) <_ m ) |
| 238 |
237
|
adantl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + t ) <_ m ) |
| 239 |
19
|
nn0zd |
|- ( ph -> t e. ZZ ) |
| 240 |
239
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. ZZ ) |
| 241 |
240
|
zred |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. RR ) |
| 242 |
58 241 57
|
leaddsub2d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( s + t ) <_ m <-> t <_ ( m - s ) ) ) |
| 243 |
238 242
|
mpbid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t <_ ( m - s ) ) |
| 244 |
|
eluz |
|- ( ( t e. ZZ /\ ( m - s ) e. ZZ ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) |
| 245 |
240 75 244
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) |
| 246 |
243 245
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( ZZ>= ` t ) ) |
| 247 |
|
peano2uz |
|- ( ( m - s ) e. ( ZZ>= ` t ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) |
| 248 |
246 247
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) |
| 249 |
|
uztrn |
|- ( ( j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) /\ ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) -> j e. ( ZZ>= ` t ) ) |
| 250 |
236 248 249
|
syl2anr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( ZZ>= ` t ) ) |
| 251 |
233 235 250
|
rspcdva |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 252 |
231 251
|
eqbrtrrd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 253 |
229 230 252
|
ltled |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 254 |
213
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
| 255 |
57
|
adantr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> m e. RR ) |
| 256 |
|
peano2zm |
|- ( s e. ZZ -> ( s - 1 ) e. ZZ ) |
| 257 |
62 256
|
syl |
|- ( ph -> ( s - 1 ) e. ZZ ) |
| 258 |
257
|
zred |
|- ( ph -> ( s - 1 ) e. RR ) |
| 259 |
258
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. RR ) |
| 260 |
228
|
nn0red |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. RR ) |
| 261 |
56
|
zcnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. CC ) |
| 262 |
58
|
recnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. CC ) |
| 263 |
|
1cnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. CC ) |
| 264 |
261 262 263
|
subsubd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) |
| 265 |
264
|
adantr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) |
| 266 |
|
elfzle1 |
|- ( j e. ( ( ( m - s ) + 1 ) ... m ) -> ( ( m - s ) + 1 ) <_ j ) |
| 267 |
266
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - s ) + 1 ) <_ j ) |
| 268 |
265 267
|
eqbrtrd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) <_ j ) |
| 269 |
255 259 260 268
|
subled |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) <_ ( s - 1 ) ) |
| 270 |
96 26
|
syl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. NN0 ) |
| 271 |
270 37
|
eleqtrdi |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( ZZ>= ` 0 ) ) |
| 272 |
257
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. ZZ ) |
| 273 |
|
elfz5 |
|- ( ( ( m - j ) e. ( ZZ>= ` 0 ) /\ ( s - 1 ) e. ZZ ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) |
| 274 |
271 272 273
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) |
| 275 |
269 274
|
mpbird |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( 0 ... ( s - 1 ) ) ) |
| 276 |
|
simplll |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
| 277 |
96 29
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
| 278 |
277 32
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
| 279 |
276 278 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
| 280 |
279
|
sumeq2dv |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
| 281 |
280
|
eqcomd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) |
| 282 |
281
|
fveq2d |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) |
| 283 |
135
|
rspceeqv |
|- ( ( ( m - j ) e. ( 0 ... ( s - 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 284 |
275 282 283
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 285 |
|
fvex |
|- ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. _V |
| 286 |
|
eqeq1 |
|- ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 287 |
286
|
rexbidv |
|- ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 288 |
285 287 10
|
elab2 |
|- ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 289 |
284 288
|
sylibr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) |
| 290 |
|
suprub |
|- ( ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) |
| 291 |
254 289 290
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) |
| 292 |
227 228 129
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
| 293 |
96 84
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
| 294 |
43
|
absge0d |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 295 |
96 294
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
| 296 |
293 295
|
jca |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 297 |
215
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sup ( T , RR , < ) e. RR ) |
| 298 |
|
lemul12a |
|- ( ( ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) /\ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) /\ ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) /\ sup ( T , RR , < ) e. RR ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 299 |
292 230 296 297 298
|
syl22anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 300 |
253 291 299
|
mp2and |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 301 |
88 97 226 300
|
fsumle |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 302 |
225
|
recnd |
|- ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) |
| 303 |
302
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) |
| 304 |
|
fsumconst |
|- ( ( ( ( ( m - s ) + 1 ) ... m ) e. Fin /\ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 305 |
88 303 304
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 306 |
|
1zzd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. ZZ ) |
| 307 |
62
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ZZ ) |
| 308 |
|
fzen |
|- ( ( 1 e. ZZ /\ s e. ZZ /\ ( m - s ) e. ZZ ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) |
| 309 |
306 307 75 308
|
syl3anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) |
| 310 |
|
ax-1cn |
|- 1 e. CC |
| 311 |
75
|
zcnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. CC ) |
| 312 |
|
addcom |
|- ( ( 1 e. CC /\ ( m - s ) e. CC ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) |
| 313 |
310 311 312
|
sylancr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) |
| 314 |
262 261
|
pncan3d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + ( m - s ) ) = m ) |
| 315 |
313 314
|
oveq12d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) = ( ( ( m - s ) + 1 ) ... m ) ) |
| 316 |
309 315
|
breqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) |
| 317 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) e. Fin ) |
| 318 |
|
hashen |
|- ( ( ( 1 ... s ) e. Fin /\ ( ( ( m - s ) + 1 ) ... m ) e. Fin ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 319 |
317 88 318
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 320 |
316 319
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 321 |
|
hashfz1 |
|- ( s e. NN0 -> ( # ` ( 1 ... s ) ) = s ) |
| 322 |
53 321
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = s ) |
| 323 |
320 322
|
eqtr3d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( ( ( m - s ) + 1 ) ... m ) ) = s ) |
| 324 |
323
|
oveq1d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 325 |
215
|
recnd |
|- ( ph -> sup ( T , RR , < ) e. CC ) |
| 326 |
218
|
rpcnne0d |
|- ( ph -> ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) |
| 327 |
|
div23 |
|- ( ( ( E / 2 ) e. CC /\ sup ( T , RR , < ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 328 |
160 325 326 327
|
syl3anc |
|- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 329 |
62
|
zcnd |
|- ( ph -> s e. CC ) |
| 330 |
222
|
rpcnd |
|- ( ph -> ( ( E / 2 ) / s ) e. CC ) |
| 331 |
|
divass |
|- ( ( s e. CC /\ ( ( E / 2 ) / s ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 332 |
329 330 326 331
|
syl3anc |
|- ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 333 |
16
|
nnne0d |
|- ( ph -> s =/= 0 ) |
| 334 |
160 329 333
|
divcan2d |
|- ( ph -> ( s x. ( ( E / 2 ) / s ) ) = ( E / 2 ) ) |
| 335 |
334
|
oveq1d |
|- ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 336 |
332 335
|
eqtr3d |
|- ( ph -> ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 337 |
336
|
oveq1d |
|- ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
| 338 |
223
|
rpcnd |
|- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. CC ) |
| 339 |
329 338 325
|
mulassd |
|- ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
| 340 |
328 337 339
|
3eqtr2rd |
|- ( ph -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 341 |
340
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 342 |
305 324 341
|
3eqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 343 |
301 342
|
breqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 344 |
|
peano2re |
|- ( sup ( T , RR , < ) e. RR -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
| 345 |
215 344
|
syl |
|- ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
| 346 |
215
|
ltp1d |
|- ( ph -> sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) |
| 347 |
215 345 99 346
|
ltmul2dd |
|- ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) |
| 348 |
216 100 218
|
ltdivmul2d |
|- ( ph -> ( ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) <-> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 349 |
347 348
|
mpbird |
|- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) |
| 350 |
349
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) |
| 351 |
98 220 101 343 350
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) |
| 352 |
87 98 101 101 212 351
|
lt2addd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) < ( ( E / 2 ) + ( E / 2 ) ) ) |
| 353 |
24 43
|
absmuld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 354 |
353
|
sumeq2dv |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 355 |
75
|
zred |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. RR ) |
| 356 |
355
|
ltp1d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) < ( ( m - s ) + 1 ) ) |
| 357 |
|
fzdisj |
|- ( ( m - s ) < ( ( m - s ) + 1 ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) |
| 358 |
356 357
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) |
| 359 |
|
fzsplit |
|- ( ( m - s ) e. ( 0 ... m ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 360 |
73 359
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) |
| 361 |
85
|
recnd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. CC ) |
| 362 |
358 360 21 361
|
fsumsplit |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) ) |
| 363 |
354 362
|
eqtr2d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) = sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
| 364 |
9
|
rpcnd |
|- ( ph -> E e. CC ) |
| 365 |
364
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. CC ) |
| 366 |
365
|
2halvesd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) + ( E / 2 ) ) = E ) |
| 367 |
352 363 366
|
3brtr3d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 368 |
46 48 50 51 367
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 369 |
368
|
ralrimiva |
|- ( ph -> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 370 |
|
fveq2 |
|- ( y = ( s + t ) -> ( ZZ>= ` y ) = ( ZZ>= ` ( s + t ) ) ) |
| 371 |
370
|
raleqdv |
|- ( y = ( s + t ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E <-> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 372 |
371
|
rspcev |
|- ( ( ( s + t ) e. NN0 /\ A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 373 |
20 369 372
|
syl2anc |
|- ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |