Step |
Hyp |
Ref |
Expression |
1 |
|
mertens.1 |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
2 |
|
mertens.2 |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
3 |
|
mertens.3 |
|- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
4 |
|
mertens.4 |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
5 |
|
mertens.5 |
|- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
6 |
|
mertens.6 |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
7 |
|
mertens.7 |
|- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
8 |
|
mertens.8 |
|- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
9 |
|
mertens.9 |
|- ( ph -> E e. RR+ ) |
10 |
|
mertens.10 |
|- T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
11 |
|
mertens.11 |
|- ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
12 |
|
mertens.12 |
|- ( ph -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
13 |
|
mertens.13 |
|- ( ph -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
14 |
12
|
simpld |
|- ( ph -> ps ) |
15 |
14 11
|
sylib |
|- ( ph -> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
16 |
15
|
simpld |
|- ( ph -> s e. NN ) |
17 |
16
|
nnnn0d |
|- ( ph -> s e. NN0 ) |
18 |
12
|
simprd |
|- ( ph -> ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
19 |
18
|
simpld |
|- ( ph -> t e. NN0 ) |
20 |
17 19
|
nn0addcld |
|- ( ph -> ( s + t ) e. NN0 ) |
21 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) e. Fin ) |
22 |
|
simpl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ph ) |
23 |
|
elfznn0 |
|- ( j e. ( 0 ... m ) -> j e. NN0 ) |
24 |
22 23 3
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> A e. CC ) |
25 |
|
eqid |
|- ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) |
26 |
|
fznn0sub |
|- ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) |
27 |
26
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) |
28 |
|
peano2nn0 |
|- ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) |
29 |
27 28
|
syl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
30 |
29
|
nn0zd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
31 |
|
simplll |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
32 |
|
eluznn0 |
|- ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
33 |
29 32
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
34 |
31 33 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
35 |
31 33 5
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
36 |
8
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
37 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
38 |
|
simpll |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ph ) |
39 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
40 |
38 39
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
41 |
37 29 40
|
iserex |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) |
42 |
36 41
|
mpbid |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
43 |
25 30 34 35 42
|
isumcl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
44 |
24 43
|
mulcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) |
45 |
21 44
|
fsumcl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) |
46 |
45
|
abscld |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
47 |
44
|
abscld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
48 |
21 47
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
49 |
9
|
rpred |
|- ( ph -> E e. RR ) |
50 |
49
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. RR ) |
51 |
21 44
|
fsumabs |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
52 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) e. Fin ) |
53 |
17
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. NN0 ) |
54 |
53
|
nn0ge0d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 <_ s ) |
55 |
|
eluzelz |
|- ( m e. ( ZZ>= ` ( s + t ) ) -> m e. ZZ ) |
56 |
55
|
adantl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ZZ ) |
57 |
56
|
zred |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. RR ) |
58 |
53
|
nn0red |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. RR ) |
59 |
57 58
|
subge02d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 <_ s <-> ( m - s ) <_ m ) ) |
60 |
54 59
|
mpbid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) <_ m ) |
61 |
53 37
|
eleqtrdi |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( ZZ>= ` 0 ) ) |
62 |
16
|
nnzd |
|- ( ph -> s e. ZZ ) |
63 |
|
uzid |
|- ( s e. ZZ -> s e. ( ZZ>= ` s ) ) |
64 |
62 63
|
syl |
|- ( ph -> s e. ( ZZ>= ` s ) ) |
65 |
|
uzaddcl |
|- ( ( s e. ( ZZ>= ` s ) /\ t e. NN0 ) -> ( s + t ) e. ( ZZ>= ` s ) ) |
66 |
64 19 65
|
syl2anc |
|- ( ph -> ( s + t ) e. ( ZZ>= ` s ) ) |
67 |
|
eqid |
|- ( ZZ>= ` s ) = ( ZZ>= ` s ) |
68 |
67
|
uztrn2 |
|- ( ( ( s + t ) e. ( ZZ>= ` s ) /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) |
69 |
66 68
|
sylan |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) |
70 |
|
elfzuzb |
|- ( s e. ( 0 ... m ) <-> ( s e. ( ZZ>= ` 0 ) /\ m e. ( ZZ>= ` s ) ) ) |
71 |
61 69 70
|
sylanbrc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( 0 ... m ) ) |
72 |
|
fznn0sub2 |
|- ( s e. ( 0 ... m ) -> ( m - s ) e. ( 0 ... m ) ) |
73 |
71 72
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( 0 ... m ) ) |
74 |
|
elfzelz |
|- ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. ZZ ) |
75 |
73 74
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ZZ ) |
76 |
|
eluz |
|- ( ( ( m - s ) e. ZZ /\ m e. ZZ ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) |
77 |
75 56 76
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) |
78 |
60 77
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` ( m - s ) ) ) |
79 |
|
fzss2 |
|- ( m e. ( ZZ>= ` ( m - s ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) |
80 |
78 79
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) |
81 |
80
|
sselda |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ( 0 ... m ) ) |
82 |
3
|
abscld |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
83 |
22 23 82
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` A ) e. RR ) |
84 |
43
|
abscld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
85 |
83 84
|
remulcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
86 |
81 85
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
87 |
52 86
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
88 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) e. Fin ) |
89 |
|
elfznn0 |
|- ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. NN0 ) |
90 |
73 89
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. NN0 ) |
91 |
|
peano2nn0 |
|- ( ( m - s ) e. NN0 -> ( ( m - s ) + 1 ) e. NN0 ) |
92 |
90 91
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. NN0 ) |
93 |
92 37
|
eleqtrdi |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) ) |
94 |
|
fzss1 |
|- ( ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) |
95 |
93 94
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) |
96 |
95
|
sselda |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( 0 ... m ) ) |
97 |
96 85
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
98 |
88 97
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) |
99 |
9
|
rphalfcld |
|- ( ph -> ( E / 2 ) e. RR+ ) |
100 |
99
|
rpred |
|- ( ph -> ( E / 2 ) e. RR ) |
101 |
100
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. RR ) |
102 |
|
elfznn0 |
|- ( j e. ( 0 ... ( m - s ) ) -> j e. NN0 ) |
103 |
22 102 82
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. RR ) |
104 |
52 103
|
fsumrecl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR ) |
105 |
104 101
|
remulcld |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR ) |
106 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
107 |
|
eqidd |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( K ` j ) ) |
108 |
2 82
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) e. RR ) |
109 |
37 106 107 108 7
|
isumrecl |
|- ( ph -> sum_ j e. NN0 ( K ` j ) e. RR ) |
110 |
3
|
absge0d |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
111 |
110 2
|
breqtrrd |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( K ` j ) ) |
112 |
37 106 107 108 7 111
|
isumge0 |
|- ( ph -> 0 <_ sum_ j e. NN0 ( K ` j ) ) |
113 |
109 112
|
ge0p1rpd |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
114 |
113
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
115 |
105 114
|
rerpdivcld |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
116 |
99 113
|
rpdivcld |
|- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR+ ) |
117 |
116
|
rpred |
|- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
118 |
117
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) |
119 |
103 118
|
remulcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) e. RR ) |
120 |
81 30
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. ZZ ) |
121 |
|
simplll |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
122 |
81 29
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
123 |
122 32
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
124 |
121 123 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
125 |
121 123 5
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) |
126 |
81 42
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) |
127 |
25 120 124 125 126
|
isumcl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) |
128 |
127
|
abscld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
129 |
82 110
|
jca |
|- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
130 |
22 102 129
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
131 |
124
|
sumeq2dv |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
132 |
131
|
fveq2d |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
133 |
|
fvoveq1 |
|- ( n = ( m - j ) -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) ) |
134 |
133
|
sumeq1d |
|- ( n = ( m - j ) -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) |
135 |
134
|
fveq2d |
|- ( n = ( m - j ) -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) |
136 |
135
|
breq1d |
|- ( n = ( m - j ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
137 |
15
|
simprd |
|- ( ph -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
138 |
137
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
139 |
|
elfzelz |
|- ( j e. ( 0 ... ( m - s ) ) -> j e. ZZ ) |
140 |
139
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ZZ ) |
141 |
140
|
zred |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. RR ) |
142 |
55
|
ad2antlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. ZZ ) |
143 |
142
|
zred |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. RR ) |
144 |
62
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. ZZ ) |
145 |
144
|
zred |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. RR ) |
146 |
|
elfzle2 |
|- ( j e. ( 0 ... ( m - s ) ) -> j <_ ( m - s ) ) |
147 |
146
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j <_ ( m - s ) ) |
148 |
141 143 145 147
|
lesubd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s <_ ( m - j ) ) |
149 |
142 140
|
zsubcld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ZZ ) |
150 |
|
eluz |
|- ( ( s e. ZZ /\ ( m - j ) e. ZZ ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) |
151 |
144 149 150
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) |
152 |
148 151
|
mpbird |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ( ZZ>= ` s ) ) |
153 |
136 138 152
|
rspcdva |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
154 |
132 153
|
eqbrtrrd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
155 |
128 118 154
|
ltled |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
156 |
|
lemul2a |
|- ( ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
157 |
128 118 130 155 156
|
syl31anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
158 |
52 86 119 157
|
fsumle |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
159 |
104
|
recnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. CC ) |
160 |
99
|
rpcnd |
|- ( ph -> ( E / 2 ) e. CC ) |
161 |
160
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. CC ) |
162 |
|
peano2re |
|- ( sum_ j e. NN0 ( K ` j ) e. RR -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
163 |
109 162
|
syl |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
164 |
163
|
recnd |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) |
165 |
164
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) |
166 |
113
|
rpne0d |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) |
167 |
166
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) |
168 |
159 161 165 167
|
divassd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
169 |
|
fveq2 |
|- ( n = j -> ( K ` n ) = ( K ` j ) ) |
170 |
169
|
cbvsumv |
|- sum_ n e. NN0 ( K ` n ) = sum_ j e. NN0 ( K ` j ) |
171 |
170
|
oveq1i |
|- ( sum_ n e. NN0 ( K ` n ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) |
172 |
171
|
oveq2i |
|- ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) = ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
173 |
172 116
|
eqeltrid |
|- ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. RR+ ) |
174 |
173
|
rpcnd |
|- ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) |
175 |
174
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) |
176 |
82
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. CC ) |
177 |
22 102 176
|
syl2an |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. CC ) |
178 |
52 175 177
|
fsummulc1 |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) ) |
179 |
172
|
oveq2i |
|- ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
180 |
172
|
oveq2i |
|- ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
181 |
180
|
a1i |
|- ( j e. ( 0 ... ( m - s ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
182 |
181
|
sumeq2i |
|- sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
183 |
178 179 182
|
3eqtr3g |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
184 |
168 183
|
eqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
185 |
158 184
|
breqtrrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
186 |
109
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) e. RR ) |
187 |
163
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) |
188 |
|
0zd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 e. ZZ ) |
189 |
|
fz0ssnn0 |
|- ( 0 ... ( m - s ) ) C_ NN0 |
190 |
189
|
a1i |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ NN0 ) |
191 |
2
|
adantlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
192 |
82
|
adantlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
193 |
110
|
adantlr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
194 |
7
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> seq 0 ( + , K ) e. dom ~~> ) |
195 |
37 188 52 190 191 192 193 194
|
isumless |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( abs ` A ) ) |
196 |
2
|
sumeq2dv |
|- ( ph -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) |
197 |
196
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) |
198 |
195 197
|
breqtrrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( K ` j ) ) |
199 |
109
|
ltp1d |
|- ( ph -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
200 |
199
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
201 |
104 186 187 198 200
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) |
202 |
99
|
rpregt0d |
|- ( ph -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) |
203 |
202
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) |
204 |
|
ltmul1 |
|- ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR /\ ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
205 |
104 187 203 204
|
syl3anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
206 |
201 205
|
mpbid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) |
207 |
113
|
rpregt0d |
|- ( ph -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
208 |
207
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
209 |
|
ltdivmul |
|- ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR /\ ( E / 2 ) e. RR /\ ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
210 |
105 101 208 209
|
syl3anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) |
211 |
206 210
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) ) |
212 |
87 115 101 185 211
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) |
213 |
13
|
simprd |
|- ( ph -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
214 |
|
suprcl |
|- ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) -> sup ( T , RR , < ) e. RR ) |
215 |
213 214
|
syl |
|- ( ph -> sup ( T , RR , < ) e. RR ) |
216 |
100 215
|
remulcld |
|- ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) e. RR ) |
217 |
13
|
simpld |
|- ( ph -> 0 <_ sup ( T , RR , < ) ) |
218 |
215 217
|
ge0p1rpd |
|- ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR+ ) |
219 |
216 218
|
rerpdivcld |
|- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
220 |
219
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
221 |
16
|
nnrpd |
|- ( ph -> s e. RR+ ) |
222 |
99 221
|
rpdivcld |
|- ( ph -> ( ( E / 2 ) / s ) e. RR+ ) |
223 |
222 218
|
rpdivcld |
|- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR+ ) |
224 |
223
|
rpred |
|- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
225 |
224 215
|
remulcld |
|- ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) |
226 |
225
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) |
227 |
|
simpll |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ph ) |
228 |
96 23
|
syl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. NN0 ) |
229 |
227 228 82
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) e. RR ) |
230 |
224
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) |
231 |
227 228 2
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) = ( abs ` A ) ) |
232 |
|
fveq2 |
|- ( m = j -> ( K ` m ) = ( K ` j ) ) |
233 |
232
|
breq1d |
|- ( m = j -> ( ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
234 |
18
|
simprd |
|- ( ph -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
235 |
234
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
236 |
|
elfzuz |
|- ( j e. ( ( ( m - s ) + 1 ) ... m ) -> j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) ) |
237 |
|
eluzle |
|- ( m e. ( ZZ>= ` ( s + t ) ) -> ( s + t ) <_ m ) |
238 |
237
|
adantl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + t ) <_ m ) |
239 |
19
|
nn0zd |
|- ( ph -> t e. ZZ ) |
240 |
239
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. ZZ ) |
241 |
240
|
zred |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. RR ) |
242 |
58 241 57
|
leaddsub2d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( s + t ) <_ m <-> t <_ ( m - s ) ) ) |
243 |
238 242
|
mpbid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t <_ ( m - s ) ) |
244 |
|
eluz |
|- ( ( t e. ZZ /\ ( m - s ) e. ZZ ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) |
245 |
240 75 244
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) |
246 |
243 245
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( ZZ>= ` t ) ) |
247 |
|
peano2uz |
|- ( ( m - s ) e. ( ZZ>= ` t ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) |
248 |
246 247
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) |
249 |
|
uztrn |
|- ( ( j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) /\ ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) -> j e. ( ZZ>= ` t ) ) |
250 |
236 248 249
|
syl2anr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( ZZ>= ` t ) ) |
251 |
233 235 250
|
rspcdva |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
252 |
231 251
|
eqbrtrrd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
253 |
229 230 252
|
ltled |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
254 |
213
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
255 |
57
|
adantr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> m e. RR ) |
256 |
|
peano2zm |
|- ( s e. ZZ -> ( s - 1 ) e. ZZ ) |
257 |
62 256
|
syl |
|- ( ph -> ( s - 1 ) e. ZZ ) |
258 |
257
|
zred |
|- ( ph -> ( s - 1 ) e. RR ) |
259 |
258
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. RR ) |
260 |
228
|
nn0red |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. RR ) |
261 |
56
|
zcnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. CC ) |
262 |
58
|
recnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. CC ) |
263 |
|
1cnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. CC ) |
264 |
261 262 263
|
subsubd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) |
265 |
264
|
adantr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) |
266 |
|
elfzle1 |
|- ( j e. ( ( ( m - s ) + 1 ) ... m ) -> ( ( m - s ) + 1 ) <_ j ) |
267 |
266
|
adantl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - s ) + 1 ) <_ j ) |
268 |
265 267
|
eqbrtrd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) <_ j ) |
269 |
255 259 260 268
|
subled |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) <_ ( s - 1 ) ) |
270 |
96 26
|
syl |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. NN0 ) |
271 |
270 37
|
eleqtrdi |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( ZZ>= ` 0 ) ) |
272 |
257
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. ZZ ) |
273 |
|
elfz5 |
|- ( ( ( m - j ) e. ( ZZ>= ` 0 ) /\ ( s - 1 ) e. ZZ ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) |
274 |
271 272 273
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) |
275 |
269 274
|
mpbird |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( 0 ... ( s - 1 ) ) ) |
276 |
|
simplll |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) |
277 |
96 29
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) |
278 |
277 32
|
sylan |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) |
279 |
276 278 4
|
syl2anc |
|- ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) |
280 |
279
|
sumeq2dv |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) |
281 |
280
|
eqcomd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) |
282 |
281
|
fveq2d |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) |
283 |
135
|
rspceeqv |
|- ( ( ( m - j ) e. ( 0 ... ( s - 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
284 |
275 282 283
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
285 |
|
fvex |
|- ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. _V |
286 |
|
eqeq1 |
|- ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
287 |
286
|
rexbidv |
|- ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
288 |
285 287 10
|
elab2 |
|- ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
289 |
284 288
|
sylibr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) |
290 |
|
suprub |
|- ( ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) |
291 |
254 289 290
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) |
292 |
227 228 129
|
syl2anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) |
293 |
96 84
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) |
294 |
43
|
absge0d |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
295 |
96 294
|
syldan |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) |
296 |
293 295
|
jca |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
297 |
215
|
ad2antrr |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sup ( T , RR , < ) e. RR ) |
298 |
|
lemul12a |
|- ( ( ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) /\ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) /\ ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) /\ sup ( T , RR , < ) e. RR ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
299 |
292 230 296 297 298
|
syl22anc |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
300 |
253 291 299
|
mp2and |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
301 |
88 97 226 300
|
fsumle |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
302 |
225
|
recnd |
|- ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) |
303 |
302
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) |
304 |
|
fsumconst |
|- ( ( ( ( ( m - s ) + 1 ) ... m ) e. Fin /\ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
305 |
88 303 304
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
306 |
|
1zzd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. ZZ ) |
307 |
62
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ZZ ) |
308 |
|
fzen |
|- ( ( 1 e. ZZ /\ s e. ZZ /\ ( m - s ) e. ZZ ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) |
309 |
306 307 75 308
|
syl3anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) |
310 |
|
ax-1cn |
|- 1 e. CC |
311 |
75
|
zcnd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. CC ) |
312 |
|
addcom |
|- ( ( 1 e. CC /\ ( m - s ) e. CC ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) |
313 |
310 311 312
|
sylancr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) |
314 |
262 261
|
pncan3d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + ( m - s ) ) = m ) |
315 |
313 314
|
oveq12d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) = ( ( ( m - s ) + 1 ) ... m ) ) |
316 |
309 315
|
breqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) |
317 |
|
fzfid |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) e. Fin ) |
318 |
|
hashen |
|- ( ( ( 1 ... s ) e. Fin /\ ( ( ( m - s ) + 1 ) ... m ) e. Fin ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) |
319 |
317 88 318
|
syl2anc |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) |
320 |
316 319
|
mpbird |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) ) |
321 |
|
hashfz1 |
|- ( s e. NN0 -> ( # ` ( 1 ... s ) ) = s ) |
322 |
53 321
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = s ) |
323 |
320 322
|
eqtr3d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( ( ( m - s ) + 1 ) ... m ) ) = s ) |
324 |
323
|
oveq1d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
325 |
215
|
recnd |
|- ( ph -> sup ( T , RR , < ) e. CC ) |
326 |
218
|
rpcnne0d |
|- ( ph -> ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) |
327 |
|
div23 |
|- ( ( ( E / 2 ) e. CC /\ sup ( T , RR , < ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
328 |
160 325 326 327
|
syl3anc |
|- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
329 |
62
|
zcnd |
|- ( ph -> s e. CC ) |
330 |
222
|
rpcnd |
|- ( ph -> ( ( E / 2 ) / s ) e. CC ) |
331 |
|
divass |
|- ( ( s e. CC /\ ( ( E / 2 ) / s ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
332 |
329 330 326 331
|
syl3anc |
|- ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
333 |
16
|
nnne0d |
|- ( ph -> s =/= 0 ) |
334 |
160 329 333
|
divcan2d |
|- ( ph -> ( s x. ( ( E / 2 ) / s ) ) = ( E / 2 ) ) |
335 |
334
|
oveq1d |
|- ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) |
336 |
332 335
|
eqtr3d |
|- ( ph -> ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) |
337 |
336
|
oveq1d |
|- ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) |
338 |
223
|
rpcnd |
|- ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. CC ) |
339 |
329 338 325
|
mulassd |
|- ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) |
340 |
328 337 339
|
3eqtr2rd |
|- ( ph -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
341 |
340
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
342 |
305 324 341
|
3eqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
343 |
301 342
|
breqtrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) |
344 |
|
peano2re |
|- ( sup ( T , RR , < ) e. RR -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
345 |
215 344
|
syl |
|- ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR ) |
346 |
215
|
ltp1d |
|- ( ph -> sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) |
347 |
215 345 99 346
|
ltmul2dd |
|- ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) |
348 |
216 100 218
|
ltdivmul2d |
|- ( ph -> ( ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) <-> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) ) |
349 |
347 348
|
mpbird |
|- ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) |
350 |
349
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) |
351 |
98 220 101 343 350
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) |
352 |
87 98 101 101 212 351
|
lt2addd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) < ( ( E / 2 ) + ( E / 2 ) ) ) |
353 |
24 43
|
absmuld |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
354 |
353
|
sumeq2dv |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
355 |
75
|
zred |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. RR ) |
356 |
355
|
ltp1d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) < ( ( m - s ) + 1 ) ) |
357 |
|
fzdisj |
|- ( ( m - s ) < ( ( m - s ) + 1 ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) |
358 |
356 357
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) |
359 |
|
fzsplit |
|- ( ( m - s ) e. ( 0 ... m ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) |
360 |
73 359
|
syl |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) |
361 |
85
|
recnd |
|- ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. CC ) |
362 |
358 360 21 361
|
fsumsplit |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) ) |
363 |
354 362
|
eqtr2d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) = sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) |
364 |
9
|
rpcnd |
|- ( ph -> E e. CC ) |
365 |
364
|
adantr |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. CC ) |
366 |
365
|
2halvesd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) + ( E / 2 ) ) = E ) |
367 |
352 363 366
|
3brtr3d |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
368 |
46 48 50 51 367
|
lelttrd |
|- ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
369 |
368
|
ralrimiva |
|- ( ph -> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
370 |
|
fveq2 |
|- ( y = ( s + t ) -> ( ZZ>= ` y ) = ( ZZ>= ` ( s + t ) ) ) |
371 |
370
|
raleqdv |
|- ( y = ( s + t ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E <-> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
372 |
371
|
rspcev |
|- ( ( ( s + t ) e. NN0 /\ A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
373 |
20 369 372
|
syl2anc |
|- ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |