| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mertens.1 |
|- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) |
| 2 |
|
mertens.2 |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 3 |
|
mertens.3 |
|- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
| 4 |
|
mertens.4 |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 5 |
|
mertens.5 |
|- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
| 6 |
|
mertens.6 |
|- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 7 |
|
mertens.7 |
|- ( ph -> seq 0 ( + , K ) e. dom ~~> ) |
| 8 |
|
mertens.8 |
|- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
| 9 |
|
mertens.9 |
|- ( ph -> E e. RR+ ) |
| 10 |
|
mertens.10 |
|- T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } |
| 11 |
|
mertens.11 |
|- ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 12 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 13 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 14 |
9
|
rphalfcld |
|- ( ph -> ( E / 2 ) e. RR+ ) |
| 15 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 16 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 17 |
|
eqidd |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( K ` j ) ) |
| 18 |
3
|
abscld |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 19 |
2 18
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( K ` j ) e. RR ) |
| 20 |
15 16 17 19 7
|
isumrecl |
|- ( ph -> sum_ j e. NN0 ( K ` j ) e. RR ) |
| 21 |
3
|
absge0d |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 22 |
21 2
|
breqtrrd |
|- ( ( ph /\ j e. NN0 ) -> 0 <_ ( K ` j ) ) |
| 23 |
15 16 17 19 7 22
|
isumge0 |
|- ( ph -> 0 <_ sum_ j e. NN0 ( K ` j ) ) |
| 24 |
20 23
|
ge0p1rpd |
|- ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) |
| 25 |
14 24
|
rpdivcld |
|- ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR+ ) |
| 26 |
|
eqidd |
|- ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) ` m ) = ( seq 0 ( + , G ) ` m ) ) |
| 27 |
15 16 4 5 8
|
isumclim2 |
|- ( ph -> seq 0 ( + , G ) ~~> sum_ k e. NN0 B ) |
| 28 |
12 13 25 26 27
|
climi2 |
|- ( ph -> E. s e. NN A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 29 |
|
eluznn |
|- ( ( s e. NN /\ m e. ( ZZ>= ` s ) ) -> m e. NN ) |
| 30 |
4 5
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 31 |
15 16 30
|
serf |
|- ( ph -> seq 0 ( + , G ) : NN0 --> CC ) |
| 32 |
|
nnnn0 |
|- ( m e. NN -> m e. NN0 ) |
| 33 |
|
ffvelcdm |
|- ( ( seq 0 ( + , G ) : NN0 --> CC /\ m e. NN0 ) -> ( seq 0 ( + , G ) ` m ) e. CC ) |
| 34 |
31 32 33
|
syl2an |
|- ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) ` m ) e. CC ) |
| 35 |
15 16 4 5 8
|
isumcl |
|- ( ph -> sum_ k e. NN0 B e. CC ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B e. CC ) |
| 37 |
34 36
|
abssubd |
|- ( ( ph /\ m e. NN ) -> ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) = ( abs ` ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) ) ) |
| 38 |
|
eqid |
|- ( ZZ>= ` ( m + 1 ) ) = ( ZZ>= ` ( m + 1 ) ) |
| 39 |
32
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. NN0 ) |
| 40 |
|
peano2nn0 |
|- ( m e. NN0 -> ( m + 1 ) e. NN0 ) |
| 41 |
39 40
|
syl |
|- ( ( ph /\ m e. NN ) -> ( m + 1 ) e. NN0 ) |
| 42 |
41
|
nn0zd |
|- ( ( ph /\ m e. NN ) -> ( m + 1 ) e. ZZ ) |
| 43 |
|
simpll |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> ph ) |
| 44 |
|
eluznn0 |
|- ( ( ( m + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. NN0 ) |
| 45 |
41 44
|
sylan |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. NN0 ) |
| 46 |
43 45 4
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> ( G ` k ) = B ) |
| 47 |
43 45 5
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> B e. CC ) |
| 48 |
8
|
adantr |
|- ( ( ph /\ m e. NN ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 49 |
30
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 50 |
15 41 49
|
iserex |
|- ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( m + 1 ) ( + , G ) e. dom ~~> ) ) |
| 51 |
48 50
|
mpbid |
|- ( ( ph /\ m e. NN ) -> seq ( m + 1 ) ( + , G ) e. dom ~~> ) |
| 52 |
38 42 46 47 51
|
isumcl |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) B e. CC ) |
| 53 |
34 52
|
pncan2d |
|- ( ( ph /\ m e. NN ) -> ( ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) - ( seq 0 ( + , G ) ` m ) ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) |
| 54 |
4
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 55 |
5
|
adantlr |
|- ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> B e. CC ) |
| 56 |
15 38 41 54 55 48
|
isumsplit |
|- ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) |
| 57 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
| 58 |
57
|
adantl |
|- ( ( ph /\ m e. NN ) -> m e. CC ) |
| 59 |
|
ax-1cn |
|- 1 e. CC |
| 60 |
|
pncan |
|- ( ( m e. CC /\ 1 e. CC ) -> ( ( m + 1 ) - 1 ) = m ) |
| 61 |
58 59 60
|
sylancl |
|- ( ( ph /\ m e. NN ) -> ( ( m + 1 ) - 1 ) = m ) |
| 62 |
61
|
oveq2d |
|- ( ( ph /\ m e. NN ) -> ( 0 ... ( ( m + 1 ) - 1 ) ) = ( 0 ... m ) ) |
| 63 |
62
|
sumeq1d |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... m ) B ) |
| 64 |
|
simpl |
|- ( ( ph /\ m e. NN ) -> ph ) |
| 65 |
|
elfznn0 |
|- ( k e. ( 0 ... m ) -> k e. NN0 ) |
| 66 |
64 65 4
|
syl2an |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... m ) ) -> ( G ` k ) = B ) |
| 67 |
39 15
|
eleqtrdi |
|- ( ( ph /\ m e. NN ) -> m e. ( ZZ>= ` 0 ) ) |
| 68 |
64 65 5
|
syl2an |
|- ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... m ) ) -> B e. CC ) |
| 69 |
66 67 68
|
fsumser |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... m ) B = ( seq 0 ( + , G ) ` m ) ) |
| 70 |
63 69
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B = ( seq 0 ( + , G ) ` m ) ) |
| 71 |
70
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) = ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) |
| 72 |
56 71
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B = ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) |
| 73 |
72
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) = ( ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) - ( seq 0 ( + , G ) ` m ) ) ) |
| 74 |
46
|
sumeq2dv |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) |
| 75 |
53 73 74
|
3eqtr4d |
|- ( ( ph /\ m e. NN ) -> ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) |
| 76 |
75
|
fveq2d |
|- ( ( ph /\ m e. NN ) -> ( abs ` ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) ) |
| 77 |
37 76
|
eqtrd |
|- ( ( ph /\ m e. NN ) -> ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) ) |
| 78 |
77
|
breq1d |
|- ( ( ph /\ m e. NN ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 79 |
29 78
|
sylan2 |
|- ( ( ph /\ ( s e. NN /\ m e. ( ZZ>= ` s ) ) ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 80 |
79
|
anassrs |
|- ( ( ( ph /\ s e. NN ) /\ m e. ( ZZ>= ` s ) ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 81 |
80
|
ralbidva |
|- ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. m e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 82 |
|
fvoveq1 |
|- ( m = n -> ( ZZ>= ` ( m + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) |
| 83 |
82
|
sumeq1d |
|- ( m = n -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) |
| 84 |
83
|
fveq2d |
|- ( m = n -> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 85 |
84
|
breq1d |
|- ( m = n -> ( ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 86 |
85
|
cbvralvw |
|- ( A. m e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) |
| 87 |
81 86
|
bitrdi |
|- ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) |
| 88 |
|
0zd |
|- ( ( ph /\ ps ) -> 0 e. ZZ ) |
| 89 |
14
|
adantr |
|- ( ( ph /\ ps ) -> ( E / 2 ) e. RR+ ) |
| 90 |
11
|
simplbi |
|- ( ps -> s e. NN ) |
| 91 |
90
|
adantl |
|- ( ( ph /\ ps ) -> s e. NN ) |
| 92 |
91
|
nnrpd |
|- ( ( ph /\ ps ) -> s e. RR+ ) |
| 93 |
89 92
|
rpdivcld |
|- ( ( ph /\ ps ) -> ( ( E / 2 ) / s ) e. RR+ ) |
| 94 |
|
eqid |
|- ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) |
| 95 |
|
elfznn0 |
|- ( n e. ( 0 ... ( s - 1 ) ) -> n e. NN0 ) |
| 96 |
95
|
adantl |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> n e. NN0 ) |
| 97 |
|
peano2nn0 |
|- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
| 98 |
96 97
|
syl |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( n + 1 ) e. NN0 ) |
| 99 |
98
|
nn0zd |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( n + 1 ) e. ZZ ) |
| 100 |
|
eqidd |
|- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ( G ` k ) = ( G ` k ) ) |
| 101 |
|
simplll |
|- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ph ) |
| 102 |
|
eluznn0 |
|- ( ( ( n + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> k e. NN0 ) |
| 103 |
98 102
|
sylan |
|- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> k e. NN0 ) |
| 104 |
101 103 30
|
syl2anc |
|- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ( G ` k ) e. CC ) |
| 105 |
8
|
ad2antrr |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 106 |
30
|
ad4ant14 |
|- ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) |
| 107 |
15 98 106
|
iserex |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( n + 1 ) ( + , G ) e. dom ~~> ) ) |
| 108 |
105 107
|
mpbid |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> seq ( n + 1 ) ( + , G ) e. dom ~~> ) |
| 109 |
94 99 100 104 108
|
isumcl |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) e. CC ) |
| 110 |
109
|
abscld |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) e. RR ) |
| 111 |
|
eleq1a |
|- ( ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) e. RR -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) |
| 112 |
110 111
|
syl |
|- ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) |
| 113 |
112
|
rexlimdva |
|- ( ( ph /\ ps ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) |
| 114 |
113
|
abssdv |
|- ( ( ph /\ ps ) -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } C_ RR ) |
| 115 |
10 114
|
eqsstrid |
|- ( ( ph /\ ps ) -> T C_ RR ) |
| 116 |
|
fzfid |
|- ( ( ph /\ ps ) -> ( 0 ... ( s - 1 ) ) e. Fin ) |
| 117 |
|
abrexfi |
|- ( ( 0 ... ( s - 1 ) ) e. Fin -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } e. Fin ) |
| 118 |
116 117
|
syl |
|- ( ( ph /\ ps ) -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } e. Fin ) |
| 119 |
10 118
|
eqeltrid |
|- ( ( ph /\ ps ) -> T e. Fin ) |
| 120 |
|
nnm1nn0 |
|- ( s e. NN -> ( s - 1 ) e. NN0 ) |
| 121 |
91 120
|
syl |
|- ( ( ph /\ ps ) -> ( s - 1 ) e. NN0 ) |
| 122 |
121 15
|
eleqtrdi |
|- ( ( ph /\ ps ) -> ( s - 1 ) e. ( ZZ>= ` 0 ) ) |
| 123 |
|
eluzfz1 |
|- ( ( s - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( s - 1 ) ) ) |
| 124 |
122 123
|
syl |
|- ( ( ph /\ ps ) -> 0 e. ( 0 ... ( s - 1 ) ) ) |
| 125 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 126 |
125 4
|
sylan2 |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) = B ) |
| 127 |
126
|
sumeq2dv |
|- ( ph -> sum_ k e. NN ( G ` k ) = sum_ k e. NN B ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ ps ) -> sum_ k e. NN ( G ` k ) = sum_ k e. NN B ) |
| 129 |
128
|
fveq2d |
|- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN ( G ` k ) ) = ( abs ` sum_ k e. NN B ) ) |
| 130 |
129
|
eqcomd |
|- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) |
| 131 |
|
fv0p1e1 |
|- ( n = 0 -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` 1 ) ) |
| 132 |
131 12
|
eqtr4di |
|- ( n = 0 -> ( ZZ>= ` ( n + 1 ) ) = NN ) |
| 133 |
132
|
sumeq1d |
|- ( n = 0 -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) = sum_ k e. NN ( G ` k ) ) |
| 134 |
133
|
fveq2d |
|- ( n = 0 -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) |
| 135 |
134
|
rspceeqv |
|- ( ( 0 e. ( 0 ... ( s - 1 ) ) /\ ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 136 |
124 130 135
|
syl2anc |
|- ( ( ph /\ ps ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 137 |
|
fvex |
|- ( abs ` sum_ k e. NN B ) e. _V |
| 138 |
|
eqeq1 |
|- ( z = ( abs ` sum_ k e. NN B ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 139 |
138
|
rexbidv |
|- ( z = ( abs ` sum_ k e. NN B ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) |
| 140 |
137 139 10
|
elab2 |
|- ( ( abs ` sum_ k e. NN B ) e. T <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) |
| 141 |
136 140
|
sylibr |
|- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) e. T ) |
| 142 |
141
|
ne0d |
|- ( ( ph /\ ps ) -> T =/= (/) ) |
| 143 |
|
ltso |
|- < Or RR |
| 144 |
|
fisupcl |
|- ( ( < Or RR /\ ( T e. Fin /\ T =/= (/) /\ T C_ RR ) ) -> sup ( T , RR , < ) e. T ) |
| 145 |
143 144
|
mpan |
|- ( ( T e. Fin /\ T =/= (/) /\ T C_ RR ) -> sup ( T , RR , < ) e. T ) |
| 146 |
119 142 115 145
|
syl3anc |
|- ( ( ph /\ ps ) -> sup ( T , RR , < ) e. T ) |
| 147 |
115 146
|
sseldd |
|- ( ( ph /\ ps ) -> sup ( T , RR , < ) e. RR ) |
| 148 |
|
0red |
|- ( ( ph /\ ps ) -> 0 e. RR ) |
| 149 |
125 5
|
sylan2 |
|- ( ( ph /\ k e. NN ) -> B e. CC ) |
| 150 |
|
1nn0 |
|- 1 e. NN0 |
| 151 |
150
|
a1i |
|- ( ph -> 1 e. NN0 ) |
| 152 |
15 151 30
|
iserex |
|- ( ph -> ( seq 0 ( + , G ) e. dom ~~> <-> seq 1 ( + , G ) e. dom ~~> ) ) |
| 153 |
8 152
|
mpbid |
|- ( ph -> seq 1 ( + , G ) e. dom ~~> ) |
| 154 |
12 13 126 149 153
|
isumcl |
|- ( ph -> sum_ k e. NN B e. CC ) |
| 155 |
154
|
adantr |
|- ( ( ph /\ ps ) -> sum_ k e. NN B e. CC ) |
| 156 |
155
|
abscld |
|- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) e. RR ) |
| 157 |
155
|
absge0d |
|- ( ( ph /\ ps ) -> 0 <_ ( abs ` sum_ k e. NN B ) ) |
| 158 |
|
fimaxre2 |
|- ( ( T C_ RR /\ T e. Fin ) -> E. z e. RR A. w e. T w <_ z ) |
| 159 |
115 119 158
|
syl2anc |
|- ( ( ph /\ ps ) -> E. z e. RR A. w e. T w <_ z ) |
| 160 |
115 142 159 141
|
suprubd |
|- ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) <_ sup ( T , RR , < ) ) |
| 161 |
148 156 147 157 160
|
letrd |
|- ( ( ph /\ ps ) -> 0 <_ sup ( T , RR , < ) ) |
| 162 |
147 161
|
ge0p1rpd |
|- ( ( ph /\ ps ) -> ( sup ( T , RR , < ) + 1 ) e. RR+ ) |
| 163 |
93 162
|
rpdivcld |
|- ( ( ph /\ ps ) -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR+ ) |
| 164 |
|
fveq2 |
|- ( n = m -> ( K ` n ) = ( K ` m ) ) |
| 165 |
|
eqid |
|- ( n e. NN0 |-> ( K ` n ) ) = ( n e. NN0 |-> ( K ` n ) ) |
| 166 |
|
fvex |
|- ( K ` m ) e. _V |
| 167 |
164 165 166
|
fvmpt |
|- ( m e. NN0 -> ( ( n e. NN0 |-> ( K ` n ) ) ` m ) = ( K ` m ) ) |
| 168 |
167
|
adantl |
|- ( ( ( ph /\ ps ) /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` m ) = ( K ` m ) ) |
| 169 |
|
nn0ex |
|- NN0 e. _V |
| 170 |
169
|
mptex |
|- ( n e. NN0 |-> ( K ` n ) ) e. _V |
| 171 |
170
|
a1i |
|- ( ph -> ( n e. NN0 |-> ( K ` n ) ) e. _V ) |
| 172 |
|
elnn0uz |
|- ( j e. NN0 <-> j e. ( ZZ>= ` 0 ) ) |
| 173 |
|
fveq2 |
|- ( n = j -> ( K ` n ) = ( K ` j ) ) |
| 174 |
|
fvex |
|- ( K ` j ) e. _V |
| 175 |
173 165 174
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) |
| 176 |
175
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) |
| 177 |
172 176
|
sylan2br |
|- ( ( ph /\ j e. ( ZZ>= ` 0 ) ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) |
| 178 |
16 177
|
seqfeq |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( K ` n ) ) ) = seq 0 ( + , K ) ) |
| 179 |
178 7
|
eqeltrd |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( K ` n ) ) ) e. dom ~~> ) |
| 180 |
176 2
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( abs ` A ) ) |
| 181 |
180 18
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) e. RR ) |
| 182 |
181
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) e. CC ) |
| 183 |
15 16 171 179 182
|
serf0 |
|- ( ph -> ( n e. NN0 |-> ( K ` n ) ) ~~> 0 ) |
| 184 |
183
|
adantr |
|- ( ( ph /\ ps ) -> ( n e. NN0 |-> ( K ` n ) ) ~~> 0 ) |
| 185 |
15 88 163 168 184
|
climi0 |
|- ( ( ph /\ ps ) -> E. t e. NN0 A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 186 |
|
simplll |
|- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ph ) |
| 187 |
|
eluznn0 |
|- ( ( t e. NN0 /\ m e. ( ZZ>= ` t ) ) -> m e. NN0 ) |
| 188 |
187
|
adantll |
|- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> m e. NN0 ) |
| 189 |
19 22
|
absidd |
|- ( ( ph /\ j e. NN0 ) -> ( abs ` ( K ` j ) ) = ( K ` j ) ) |
| 190 |
189
|
ralrimiva |
|- ( ph -> A. j e. NN0 ( abs ` ( K ` j ) ) = ( K ` j ) ) |
| 191 |
|
fveq2 |
|- ( j = m -> ( K ` j ) = ( K ` m ) ) |
| 192 |
191
|
fveq2d |
|- ( j = m -> ( abs ` ( K ` j ) ) = ( abs ` ( K ` m ) ) ) |
| 193 |
192 191
|
eqeq12d |
|- ( j = m -> ( ( abs ` ( K ` j ) ) = ( K ` j ) <-> ( abs ` ( K ` m ) ) = ( K ` m ) ) ) |
| 194 |
193
|
rspccva |
|- ( ( A. j e. NN0 ( abs ` ( K ` j ) ) = ( K ` j ) /\ m e. NN0 ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) |
| 195 |
190 194
|
sylan |
|- ( ( ph /\ m e. NN0 ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) |
| 196 |
186 188 195
|
syl2anc |
|- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) |
| 197 |
196
|
breq1d |
|- ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ( ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 198 |
197
|
ralbidva |
|- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 199 |
164
|
breq1d |
|- ( n = m -> ( ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 200 |
199
|
cbvralvw |
|- ( A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) |
| 201 |
198 200
|
bitr4di |
|- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 202 |
1
|
ad4ant14 |
|- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> ( F ` j ) = A ) |
| 203 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) |
| 204 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> A e. CC ) |
| 205 |
4
|
ad4ant14 |
|- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> ( G ` k ) = B ) |
| 206 |
5
|
ad4ant14 |
|- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> B e. CC ) |
| 207 |
6
|
ad4ant14 |
|- ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) |
| 208 |
7
|
ad2antrr |
|- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> seq 0 ( + , K ) e. dom ~~> ) |
| 209 |
8
|
ad2antrr |
|- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> seq 0 ( + , G ) e. dom ~~> ) |
| 210 |
9
|
ad2antrr |
|- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> E e. RR+ ) |
| 211 |
200
|
anbi2i |
|- ( ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) <-> ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) |
| 212 |
211
|
anbi2i |
|- ( ( ps /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) <-> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 213 |
212
|
biimpi |
|- ( ( ps /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 214 |
213
|
adantll |
|- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) |
| 215 |
115 142 159
|
3jca |
|- ( ( ph /\ ps ) -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) |
| 216 |
161 215
|
jca |
|- ( ( ph /\ ps ) -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
| 217 |
216
|
adantr |
|- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) |
| 218 |
202 203 204 205 206 207 208 209 210 10 11 214 217
|
mertenslem1 |
|- ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 219 |
218
|
expr |
|- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 220 |
201 219
|
sylbid |
|- ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 221 |
220
|
rexlimdva |
|- ( ( ph /\ ps ) -> ( E. t e. NN0 A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 222 |
185 221
|
mpd |
|- ( ( ph /\ ps ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |
| 223 |
222
|
ex |
|- ( ph -> ( ps -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 224 |
11 223
|
biimtrrid |
|- ( ph -> ( ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 225 |
224
|
expdimp |
|- ( ( ph /\ s e. NN ) -> ( A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 226 |
87 225
|
sylbid |
|- ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 227 |
226
|
rexlimdva |
|- ( ph -> ( E. s e. NN A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) |
| 228 |
28 227
|
mpd |
|- ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |