Step |
Hyp |
Ref |
Expression |
1 |
|
methaus.1 |
|- J = ( MetOpen ` D ) |
2 |
|
eqid |
|- U. J = U. J |
3 |
2
|
2ndcsep |
|- ( J e. 2ndc -> E. x e. ~P U. J ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = U. J ) ) |
4 |
1
|
mopnuni |
|- ( D e. ( *Met ` X ) -> X = U. J ) |
5 |
4
|
pweqd |
|- ( D e. ( *Met ` X ) -> ~P X = ~P U. J ) |
6 |
4
|
eqeq2d |
|- ( D e. ( *Met ` X ) -> ( ( ( cls ` J ) ` x ) = X <-> ( ( cls ` J ) ` x ) = U. J ) ) |
7 |
6
|
anbi2d |
|- ( D e. ( *Met ` X ) -> ( ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) <-> ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = U. J ) ) ) |
8 |
5 7
|
rexeqbidv |
|- ( D e. ( *Met ` X ) -> ( E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) <-> E. x e. ~P U. J ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = U. J ) ) ) |
9 |
3 8
|
syl5ibr |
|- ( D e. ( *Met ` X ) -> ( J e. 2ndc -> E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) ) ) |
10 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
11 |
1
|
met2ndci |
|- ( ( D e. ( *Met ` X ) /\ ( x C_ X /\ x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) ) -> J e. 2ndc ) |
12 |
11
|
3exp2 |
|- ( D e. ( *Met ` X ) -> ( x C_ X -> ( x ~<_ _om -> ( ( ( cls ` J ) ` x ) = X -> J e. 2ndc ) ) ) ) |
13 |
12
|
imp4a |
|- ( D e. ( *Met ` X ) -> ( x C_ X -> ( ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) -> J e. 2ndc ) ) ) |
14 |
10 13
|
syl5 |
|- ( D e. ( *Met ` X ) -> ( x e. ~P X -> ( ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) -> J e. 2ndc ) ) ) |
15 |
14
|
rexlimdv |
|- ( D e. ( *Met ` X ) -> ( E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) -> J e. 2ndc ) ) |
16 |
9 15
|
impbid |
|- ( D e. ( *Met ` X ) -> ( J e. 2ndc <-> E. x e. ~P X ( x ~<_ _om /\ ( ( cls ` J ) ` x ) = X ) ) ) |