Step |
Hyp |
Ref |
Expression |
1 |
|
methaus.1 |
|- J = ( MetOpen ` D ) |
2 |
1
|
mopntop |
|- ( D e. ( *Met ` X ) -> J e. Top ) |
3 |
2
|
adantr |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> J e. Top ) |
4 |
|
simpll |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> D e. ( *Met ` X ) ) |
5 |
|
simplr1 |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> A C_ X ) |
6 |
|
simprr |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. A ) |
7 |
5 6
|
sseldd |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> y e. X ) |
8 |
|
simprl |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> x e. NN ) |
9 |
8
|
nnrpd |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> x e. RR+ ) |
10 |
9
|
rpreccld |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> ( 1 / x ) e. RR+ ) |
11 |
10
|
rpxrd |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> ( 1 / x ) e. RR* ) |
12 |
1
|
blopn |
|- ( ( D e. ( *Met ` X ) /\ y e. X /\ ( 1 / x ) e. RR* ) -> ( y ( ball ` D ) ( 1 / x ) ) e. J ) |
13 |
4 7 11 12
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( x e. NN /\ y e. A ) ) -> ( y ( ball ` D ) ( 1 / x ) ) e. J ) |
14 |
13
|
ralrimivva |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A. x e. NN A. y e. A ( y ( ball ` D ) ( 1 / x ) ) e. J ) |
15 |
|
eqid |
|- ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) = ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) |
16 |
15
|
fmpo |
|- ( A. x e. NN A. y e. A ( y ( ball ` D ) ( 1 / x ) ) e. J <-> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) --> J ) |
17 |
14 16
|
sylib |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) --> J ) |
18 |
17
|
frnd |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) C_ J ) |
19 |
|
simpll |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> D e. ( *Met ` X ) ) |
20 |
|
simprl |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> u e. J ) |
21 |
|
simprr |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> z e. u ) |
22 |
1
|
mopni2 |
|- ( ( D e. ( *Met ` X ) /\ u e. J /\ z e. u ) -> E. r e. RR+ ( z ( ball ` D ) r ) C_ u ) |
23 |
19 20 21 22
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> E. r e. RR+ ( z ( ball ` D ) r ) C_ u ) |
24 |
|
simprl |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> r e. RR+ ) |
25 |
24
|
rphalfcld |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> ( r / 2 ) e. RR+ ) |
26 |
|
elrp |
|- ( ( r / 2 ) e. RR+ <-> ( ( r / 2 ) e. RR /\ 0 < ( r / 2 ) ) ) |
27 |
|
nnrecl |
|- ( ( ( r / 2 ) e. RR /\ 0 < ( r / 2 ) ) -> E. n e. NN ( 1 / n ) < ( r / 2 ) ) |
28 |
26 27
|
sylbi |
|- ( ( r / 2 ) e. RR+ -> E. n e. NN ( 1 / n ) < ( r / 2 ) ) |
29 |
25 28
|
syl |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> E. n e. NN ( 1 / n ) < ( r / 2 ) ) |
30 |
3
|
ad2antrr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> J e. Top ) |
31 |
|
simpr1 |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A C_ X ) |
32 |
31
|
ad2antrr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> A C_ X ) |
33 |
1
|
mopnuni |
|- ( D e. ( *Met ` X ) -> X = U. J ) |
34 |
33
|
ad3antrrr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> X = U. J ) |
35 |
32 34
|
sseqtrd |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> A C_ U. J ) |
36 |
|
simplrr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. u ) |
37 |
|
simplrl |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> u e. J ) |
38 |
|
elunii |
|- ( ( z e. u /\ u e. J ) -> z e. U. J ) |
39 |
36 37 38
|
syl2anc |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. U. J ) |
40 |
39 34
|
eleqtrrd |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. X ) |
41 |
|
simpr3 |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( ( cls ` J ) ` A ) = X ) |
42 |
41
|
ad2antrr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( ( cls ` J ) ` A ) = X ) |
43 |
40 42
|
eleqtrrd |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. ( ( cls ` J ) ` A ) ) |
44 |
19
|
adantr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> D e. ( *Met ` X ) ) |
45 |
|
simprrl |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> n e. NN ) |
46 |
45
|
nnrpd |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> n e. RR+ ) |
47 |
46
|
rpreccld |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) e. RR+ ) |
48 |
47
|
rpxrd |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) e. RR* ) |
49 |
1
|
blopn |
|- ( ( D e. ( *Met ` X ) /\ z e. X /\ ( 1 / n ) e. RR* ) -> ( z ( ball ` D ) ( 1 / n ) ) e. J ) |
50 |
44 40 48 49
|
syl3anc |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( z ( ball ` D ) ( 1 / n ) ) e. J ) |
51 |
|
blcntr |
|- ( ( D e. ( *Met ` X ) /\ z e. X /\ ( 1 / n ) e. RR+ ) -> z e. ( z ( ball ` D ) ( 1 / n ) ) ) |
52 |
44 40 47 51
|
syl3anc |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> z e. ( z ( ball ` D ) ( 1 / n ) ) ) |
53 |
|
eqid |
|- U. J = U. J |
54 |
53
|
clsndisj |
|- ( ( ( J e. Top /\ A C_ U. J /\ z e. ( ( cls ` J ) ` A ) ) /\ ( ( z ( ball ` D ) ( 1 / n ) ) e. J /\ z e. ( z ( ball ` D ) ( 1 / n ) ) ) ) -> ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) =/= (/) ) |
55 |
30 35 43 50 52 54
|
syl32anc |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) =/= (/) ) |
56 |
|
n0 |
|- ( ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) =/= (/) <-> E. t t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) |
57 |
55 56
|
sylib |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> E. t t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) |
58 |
45
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> n e. NN ) |
59 |
|
simpr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) |
60 |
59
|
elin2d |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. A ) |
61 |
|
eqidd |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) |
62 |
|
oveq2 |
|- ( x = n -> ( 1 / x ) = ( 1 / n ) ) |
63 |
62
|
oveq2d |
|- ( x = n -> ( y ( ball ` D ) ( 1 / x ) ) = ( y ( ball ` D ) ( 1 / n ) ) ) |
64 |
63
|
eqeq2d |
|- ( x = n -> ( ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) <-> ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / n ) ) ) ) |
65 |
|
oveq1 |
|- ( y = t -> ( y ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) |
66 |
65
|
eqeq2d |
|- ( y = t -> ( ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / n ) ) <-> ( t ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) ) |
67 |
64 66
|
rspc2ev |
|- ( ( n e. NN /\ t e. A /\ ( t ( ball ` D ) ( 1 / n ) ) = ( t ( ball ` D ) ( 1 / n ) ) ) -> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) |
68 |
58 60 61 67
|
syl3anc |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) |
69 |
|
ovex |
|- ( t ( ball ` D ) ( 1 / n ) ) e. _V |
70 |
|
eqeq1 |
|- ( z = ( t ( ball ` D ) ( 1 / n ) ) -> ( z = ( y ( ball ` D ) ( 1 / x ) ) <-> ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) ) |
71 |
70
|
2rexbidv |
|- ( z = ( t ( ball ` D ) ( 1 / n ) ) -> ( E. x e. NN E. y e. A z = ( y ( ball ` D ) ( 1 / x ) ) <-> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) ) |
72 |
15
|
rnmpo |
|- ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) = { z | E. x e. NN E. y e. A z = ( y ( ball ` D ) ( 1 / x ) ) } |
73 |
69 71 72
|
elab2 |
|- ( ( t ( ball ` D ) ( 1 / n ) ) e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) <-> E. x e. NN E. y e. A ( t ( ball ` D ) ( 1 / n ) ) = ( y ( ball ` D ) ( 1 / x ) ) ) |
74 |
68 73
|
sylibr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) |
75 |
59
|
elin1d |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. ( z ( ball ` D ) ( 1 / n ) ) ) |
76 |
44
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> D e. ( *Met ` X ) ) |
77 |
48
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( 1 / n ) e. RR* ) |
78 |
40
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> z e. X ) |
79 |
32
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> A C_ X ) |
80 |
79 60
|
sseldd |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> t e. X ) |
81 |
|
blcom |
|- ( ( ( D e. ( *Met ` X ) /\ ( 1 / n ) e. RR* ) /\ ( z e. X /\ t e. X ) ) -> ( t e. ( z ( ball ` D ) ( 1 / n ) ) <-> z e. ( t ( ball ` D ) ( 1 / n ) ) ) ) |
82 |
76 77 78 80 81
|
syl22anc |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t e. ( z ( ball ` D ) ( 1 / n ) ) <-> z e. ( t ( ball ` D ) ( 1 / n ) ) ) ) |
83 |
75 82
|
mpbid |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> z e. ( t ( ball ` D ) ( 1 / n ) ) ) |
84 |
|
simprll |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> r e. RR+ ) |
85 |
84
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> r e. RR+ ) |
86 |
85
|
rphalfcld |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( r / 2 ) e. RR+ ) |
87 |
86
|
rpxrd |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( r / 2 ) e. RR* ) |
88 |
|
simprrr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) < ( r / 2 ) ) |
89 |
84
|
rphalfcld |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( r / 2 ) e. RR+ ) |
90 |
|
rpre |
|- ( ( 1 / n ) e. RR+ -> ( 1 / n ) e. RR ) |
91 |
|
rpre |
|- ( ( r / 2 ) e. RR+ -> ( r / 2 ) e. RR ) |
92 |
|
ltle |
|- ( ( ( 1 / n ) e. RR /\ ( r / 2 ) e. RR ) -> ( ( 1 / n ) < ( r / 2 ) -> ( 1 / n ) <_ ( r / 2 ) ) ) |
93 |
90 91 92
|
syl2an |
|- ( ( ( 1 / n ) e. RR+ /\ ( r / 2 ) e. RR+ ) -> ( ( 1 / n ) < ( r / 2 ) -> ( 1 / n ) <_ ( r / 2 ) ) ) |
94 |
47 89 93
|
syl2anc |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( ( 1 / n ) < ( r / 2 ) -> ( 1 / n ) <_ ( r / 2 ) ) ) |
95 |
88 94
|
mpd |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( 1 / n ) <_ ( r / 2 ) ) |
96 |
95
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( 1 / n ) <_ ( r / 2 ) ) |
97 |
|
ssbl |
|- ( ( ( D e. ( *Met ` X ) /\ t e. X ) /\ ( ( 1 / n ) e. RR* /\ ( r / 2 ) e. RR* ) /\ ( 1 / n ) <_ ( r / 2 ) ) -> ( t ( ball ` D ) ( 1 / n ) ) C_ ( t ( ball ` D ) ( r / 2 ) ) ) |
98 |
76 80 77 87 96 97
|
syl221anc |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) C_ ( t ( ball ` D ) ( r / 2 ) ) ) |
99 |
85
|
rpred |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> r e. RR ) |
100 |
98 83
|
sseldd |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> z e. ( t ( ball ` D ) ( r / 2 ) ) ) |
101 |
|
blhalf |
|- ( ( ( D e. ( *Met ` X ) /\ t e. X ) /\ ( r e. RR /\ z e. ( t ( ball ` D ) ( r / 2 ) ) ) ) -> ( t ( ball ` D ) ( r / 2 ) ) C_ ( z ( ball ` D ) r ) ) |
102 |
76 80 99 100 101
|
syl22anc |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( r / 2 ) ) C_ ( z ( ball ` D ) r ) ) |
103 |
|
simprlr |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> ( z ( ball ` D ) r ) C_ u ) |
104 |
103
|
adantr |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( z ( ball ` D ) r ) C_ u ) |
105 |
102 104
|
sstrd |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( r / 2 ) ) C_ u ) |
106 |
98 105
|
sstrd |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> ( t ( ball ` D ) ( 1 / n ) ) C_ u ) |
107 |
|
eleq2 |
|- ( w = ( t ( ball ` D ) ( 1 / n ) ) -> ( z e. w <-> z e. ( t ( ball ` D ) ( 1 / n ) ) ) ) |
108 |
|
sseq1 |
|- ( w = ( t ( ball ` D ) ( 1 / n ) ) -> ( w C_ u <-> ( t ( ball ` D ) ( 1 / n ) ) C_ u ) ) |
109 |
107 108
|
anbi12d |
|- ( w = ( t ( ball ` D ) ( 1 / n ) ) -> ( ( z e. w /\ w C_ u ) <-> ( z e. ( t ( ball ` D ) ( 1 / n ) ) /\ ( t ( ball ` D ) ( 1 / n ) ) C_ u ) ) ) |
110 |
109
|
rspcev |
|- ( ( ( t ( ball ` D ) ( 1 / n ) ) e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) /\ ( z e. ( t ( ball ` D ) ( 1 / n ) ) /\ ( t ( ball ` D ) ( 1 / n ) ) C_ u ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
111 |
74 83 106 110
|
syl12anc |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) /\ t e. ( ( z ( ball ` D ) ( 1 / n ) ) i^i A ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
112 |
57 111
|
exlimddv |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
113 |
112
|
anassrs |
|- ( ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) /\ ( n e. NN /\ ( 1 / n ) < ( r / 2 ) ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
114 |
29 113
|
rexlimddv |
|- ( ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) /\ ( r e. RR+ /\ ( z ( ball ` D ) r ) C_ u ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
115 |
23 114
|
rexlimddv |
|- ( ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) /\ ( u e. J /\ z e. u ) ) -> E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
116 |
115
|
ralrimivva |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A. u e. J A. z e. u E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) |
117 |
|
basgen2 |
|- ( ( J e. Top /\ ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) C_ J /\ A. u e. J A. z e. u E. w e. ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ( z e. w /\ w C_ u ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) = J ) |
118 |
3 18 116 117
|
syl3anc |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) = J ) |
119 |
118 3
|
eqeltrd |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. Top ) |
120 |
|
tgclb |
|- ( ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) e. TopBases <-> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. Top ) |
121 |
119 120
|
sylibr |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) e. TopBases ) |
122 |
|
omelon |
|- _om e. On |
123 |
|
simpr2 |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> A ~<_ _om ) |
124 |
|
nnex |
|- NN e. _V |
125 |
124
|
xpdom2 |
|- ( A ~<_ _om -> ( NN X. A ) ~<_ ( NN X. _om ) ) |
126 |
123 125
|
syl |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( NN X. A ) ~<_ ( NN X. _om ) ) |
127 |
|
nnenom |
|- NN ~~ _om |
128 |
|
omex |
|- _om e. _V |
129 |
128
|
enref |
|- _om ~~ _om |
130 |
|
xpen |
|- ( ( NN ~~ _om /\ _om ~~ _om ) -> ( NN X. _om ) ~~ ( _om X. _om ) ) |
131 |
127 129 130
|
mp2an |
|- ( NN X. _om ) ~~ ( _om X. _om ) |
132 |
|
xpomen |
|- ( _om X. _om ) ~~ _om |
133 |
131 132
|
entri |
|- ( NN X. _om ) ~~ _om |
134 |
|
domentr |
|- ( ( ( NN X. A ) ~<_ ( NN X. _om ) /\ ( NN X. _om ) ~~ _om ) -> ( NN X. A ) ~<_ _om ) |
135 |
126 133 134
|
sylancl |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( NN X. A ) ~<_ _om ) |
136 |
|
ondomen |
|- ( ( _om e. On /\ ( NN X. A ) ~<_ _om ) -> ( NN X. A ) e. dom card ) |
137 |
122 135 136
|
sylancr |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( NN X. A ) e. dom card ) |
138 |
17
|
ffnd |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) Fn ( NN X. A ) ) |
139 |
|
dffn4 |
|- ( ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) Fn ( NN X. A ) <-> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) -onto-> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) |
140 |
138 139
|
sylib |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) -onto-> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) |
141 |
|
fodomnum |
|- ( ( NN X. A ) e. dom card -> ( ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) : ( NN X. A ) -onto-> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ ( NN X. A ) ) ) |
142 |
137 140 141
|
sylc |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ ( NN X. A ) ) |
143 |
|
domtr |
|- ( ( ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ ( NN X. A ) /\ ( NN X. A ) ~<_ _om ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ _om ) |
144 |
142 135 143
|
syl2anc |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ _om ) |
145 |
|
2ndci |
|- ( ( ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) e. TopBases /\ ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ~<_ _om ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. 2ndc ) |
146 |
121 144 145
|
syl2anc |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> ( topGen ` ran ( x e. NN , y e. A |-> ( y ( ball ` D ) ( 1 / x ) ) ) ) e. 2ndc ) |
147 |
118 146
|
eqeltrrd |
|- ( ( D e. ( *Met ` X ) /\ ( A C_ X /\ A ~<_ _om /\ ( ( cls ` J ) ` A ) = X ) ) -> J e. 2ndc ) |