Metamath Proof Explorer


Theorem metdscn2

Description: The function F which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses metdscn.f
|- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) )
metdscn.j
|- J = ( MetOpen ` D )
metdscn2.k
|- K = ( TopOpen ` CCfld )
Assertion metdscn2
|- ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> F e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 metdscn.f
 |-  F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) )
2 metdscn.j
 |-  J = ( MetOpen ` D )
3 metdscn2.k
 |-  K = ( TopOpen ` CCfld )
4 eqid
 |-  ( dist ` RR*s ) = ( dist ` RR*s )
5 4 xrsdsre
 |-  ( ( dist ` RR*s ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) )
6 4 xrsxmet
 |-  ( dist ` RR*s ) e. ( *Met ` RR* )
7 ressxr
 |-  RR C_ RR*
8 eqid
 |-  ( ( dist ` RR*s ) |` ( RR X. RR ) ) = ( ( dist ` RR*s ) |` ( RR X. RR ) )
9 eqid
 |-  ( MetOpen ` ( dist ` RR*s ) ) = ( MetOpen ` ( dist ` RR*s ) )
10 eqid
 |-  ( MetOpen ` ( ( dist ` RR*s ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( dist ` RR*s ) |` ( RR X. RR ) ) )
11 8 9 10 metrest
 |-  ( ( ( dist ` RR*s ) e. ( *Met ` RR* ) /\ RR C_ RR* ) -> ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) = ( MetOpen ` ( ( dist ` RR*s ) |` ( RR X. RR ) ) ) )
12 6 7 11 mp2an
 |-  ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) = ( MetOpen ` ( ( dist ` RR*s ) |` ( RR X. RR ) ) )
13 5 12 tgioo
 |-  ( topGen ` ran (,) ) = ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR )
14 3 tgioo2
 |-  ( topGen ` ran (,) ) = ( K |`t RR )
15 13 14 eqtr3i
 |-  ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) = ( K |`t RR )
16 15 oveq2i
 |-  ( J Cn ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) ) = ( J Cn ( K |`t RR ) )
17 3 cnfldtop
 |-  K e. Top
18 cnrest2r
 |-  ( K e. Top -> ( J Cn ( K |`t RR ) ) C_ ( J Cn K ) )
19 17 18 ax-mp
 |-  ( J Cn ( K |`t RR ) ) C_ ( J Cn K )
20 16 19 eqsstri
 |-  ( J Cn ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) ) C_ ( J Cn K )
21 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
22 1 2 4 9 metdscn
 |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F e. ( J Cn ( MetOpen ` ( dist ` RR*s ) ) ) )
23 21 22 sylan
 |-  ( ( D e. ( Met ` X ) /\ S C_ X ) -> F e. ( J Cn ( MetOpen ` ( dist ` RR*s ) ) ) )
24 23 3adant3
 |-  ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> F e. ( J Cn ( MetOpen ` ( dist ` RR*s ) ) ) )
25 1 metdsre
 |-  ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> F : X --> RR )
26 frn
 |-  ( F : X --> RR -> ran F C_ RR )
27 9 mopntopon
 |-  ( ( dist ` RR*s ) e. ( *Met ` RR* ) -> ( MetOpen ` ( dist ` RR*s ) ) e. ( TopOn ` RR* ) )
28 6 27 ax-mp
 |-  ( MetOpen ` ( dist ` RR*s ) ) e. ( TopOn ` RR* )
29 cnrest2
 |-  ( ( ( MetOpen ` ( dist ` RR*s ) ) e. ( TopOn ` RR* ) /\ ran F C_ RR /\ RR C_ RR* ) -> ( F e. ( J Cn ( MetOpen ` ( dist ` RR*s ) ) ) <-> F e. ( J Cn ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) ) ) )
30 28 7 29 mp3an13
 |-  ( ran F C_ RR -> ( F e. ( J Cn ( MetOpen ` ( dist ` RR*s ) ) ) <-> F e. ( J Cn ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) ) ) )
31 25 26 30 3syl
 |-  ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> ( F e. ( J Cn ( MetOpen ` ( dist ` RR*s ) ) ) <-> F e. ( J Cn ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) ) ) )
32 24 31 mpbid
 |-  ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> F e. ( J Cn ( ( MetOpen ` ( dist ` RR*s ) ) |`t RR ) ) )
33 20 32 sseldi
 |-  ( ( D e. ( Met ` X ) /\ S C_ X /\ S =/= (/) ) -> F e. ( J Cn K ) )