| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metdscn.f |
|- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
| 2 |
|
metdscn.j |
|- J = ( MetOpen ` D ) |
| 3 |
|
metdscn.c |
|- C = ( dist ` RR*s ) |
| 4 |
|
metdscn.k |
|- K = ( MetOpen ` C ) |
| 5 |
|
metdscnlem.1 |
|- ( ph -> D e. ( *Met ` X ) ) |
| 6 |
|
metdscnlem.2 |
|- ( ph -> S C_ X ) |
| 7 |
|
metdscnlem.3 |
|- ( ph -> A e. X ) |
| 8 |
|
metdscnlem.4 |
|- ( ph -> B e. X ) |
| 9 |
|
metdscnlem.5 |
|- ( ph -> R e. RR+ ) |
| 10 |
|
metdscnlem.6 |
|- ( ph -> ( A D B ) < R ) |
| 11 |
1
|
metdsf |
|- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 12 |
5 6 11
|
syl2anc |
|- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 13 |
12 7
|
ffvelcdmd |
|- ( ph -> ( F ` A ) e. ( 0 [,] +oo ) ) |
| 14 |
|
eliccxr |
|- ( ( F ` A ) e. ( 0 [,] +oo ) -> ( F ` A ) e. RR* ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( F ` A ) e. RR* ) |
| 16 |
12 8
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. ( 0 [,] +oo ) ) |
| 17 |
|
eliccxr |
|- ( ( F ` B ) e. ( 0 [,] +oo ) -> ( F ` B ) e. RR* ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( F ` B ) e. RR* ) |
| 19 |
18
|
xnegcld |
|- ( ph -> -e ( F ` B ) e. RR* ) |
| 20 |
15 19
|
xaddcld |
|- ( ph -> ( ( F ` A ) +e -e ( F ` B ) ) e. RR* ) |
| 21 |
|
xmetcl |
|- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
| 22 |
5 7 8 21
|
syl3anc |
|- ( ph -> ( A D B ) e. RR* ) |
| 23 |
9
|
rpxrd |
|- ( ph -> R e. RR* ) |
| 24 |
1
|
metdstri |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) |
| 25 |
5 6 7 8 24
|
syl22anc |
|- ( ph -> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) |
| 26 |
|
elxrge0 |
|- ( ( F ` A ) e. ( 0 [,] +oo ) <-> ( ( F ` A ) e. RR* /\ 0 <_ ( F ` A ) ) ) |
| 27 |
26
|
simprbi |
|- ( ( F ` A ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` A ) ) |
| 28 |
13 27
|
syl |
|- ( ph -> 0 <_ ( F ` A ) ) |
| 29 |
|
elxrge0 |
|- ( ( F ` B ) e. ( 0 [,] +oo ) <-> ( ( F ` B ) e. RR* /\ 0 <_ ( F ` B ) ) ) |
| 30 |
29
|
simprbi |
|- ( ( F ` B ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` B ) ) |
| 31 |
16 30
|
syl |
|- ( ph -> 0 <_ ( F ` B ) ) |
| 32 |
|
ge0nemnf |
|- ( ( ( F ` B ) e. RR* /\ 0 <_ ( F ` B ) ) -> ( F ` B ) =/= -oo ) |
| 33 |
18 31 32
|
syl2anc |
|- ( ph -> ( F ` B ) =/= -oo ) |
| 34 |
|
xmetge0 |
|- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
| 35 |
5 7 8 34
|
syl3anc |
|- ( ph -> 0 <_ ( A D B ) ) |
| 36 |
|
xlesubadd |
|- ( ( ( ( F ` A ) e. RR* /\ ( F ` B ) e. RR* /\ ( A D B ) e. RR* ) /\ ( 0 <_ ( F ` A ) /\ ( F ` B ) =/= -oo /\ 0 <_ ( A D B ) ) ) -> ( ( ( F ` A ) +e -e ( F ` B ) ) <_ ( A D B ) <-> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) ) |
| 37 |
15 18 22 28 33 35 36
|
syl33anc |
|- ( ph -> ( ( ( F ` A ) +e -e ( F ` B ) ) <_ ( A D B ) <-> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) ) |
| 38 |
25 37
|
mpbird |
|- ( ph -> ( ( F ` A ) +e -e ( F ` B ) ) <_ ( A D B ) ) |
| 39 |
20 22 23 38 10
|
xrlelttrd |
|- ( ph -> ( ( F ` A ) +e -e ( F ` B ) ) < R ) |