| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f |  |-  F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) | 
						
							| 2 |  | metdscn.j |  |-  J = ( MetOpen ` D ) | 
						
							| 3 |  | simpll1 |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> D e. ( *Met ` X ) ) | 
						
							| 4 |  | simprl |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> z e. J ) | 
						
							| 5 |  | simprr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> A e. z ) | 
						
							| 6 | 2 | mopni2 |  |-  ( ( D e. ( *Met ` X ) /\ z e. J /\ A e. z ) -> E. r e. RR+ ( A ( ball ` D ) r ) C_ z ) | 
						
							| 7 | 3 4 5 6 | syl3anc |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> E. r e. RR+ ( A ( ball ` D ) r ) C_ z ) | 
						
							| 8 |  | simprr |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( A ( ball ` D ) r ) C_ z ) | 
						
							| 9 | 8 | ssrind |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( ( A ( ball ` D ) r ) i^i S ) C_ ( z i^i S ) ) | 
						
							| 10 |  | rpgt0 |  |-  ( r e. RR+ -> 0 < r ) | 
						
							| 11 |  | 0re |  |-  0 e. RR | 
						
							| 12 |  | rpre |  |-  ( r e. RR+ -> r e. RR ) | 
						
							| 13 |  | ltnle |  |-  ( ( 0 e. RR /\ r e. RR ) -> ( 0 < r <-> -. r <_ 0 ) ) | 
						
							| 14 | 11 12 13 | sylancr |  |-  ( r e. RR+ -> ( 0 < r <-> -. r <_ 0 ) ) | 
						
							| 15 | 10 14 | mpbid |  |-  ( r e. RR+ -> -. r <_ 0 ) | 
						
							| 16 | 15 | ad2antrl |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> -. r <_ 0 ) | 
						
							| 17 |  | simpllr |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( F ` A ) = 0 ) | 
						
							| 18 | 17 | breq2d |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ ( F ` A ) <-> r <_ 0 ) ) | 
						
							| 19 | 3 | adantr |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> D e. ( *Met ` X ) ) | 
						
							| 20 |  | simpl2 |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> S C_ X ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> S C_ X ) | 
						
							| 22 |  | simpl3 |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A e. X ) | 
						
							| 23 | 22 | ad2antrr |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> A e. X ) | 
						
							| 24 |  | rpxr |  |-  ( r e. RR+ -> r e. RR* ) | 
						
							| 25 | 24 | ad2antrl |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> r e. RR* ) | 
						
							| 26 | 1 | metdsge |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ r e. RR* ) -> ( r <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) r ) ) = (/) ) ) | 
						
							| 27 | 19 21 23 25 26 | syl31anc |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) r ) ) = (/) ) ) | 
						
							| 28 | 18 27 | bitr3d |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ 0 <-> ( S i^i ( A ( ball ` D ) r ) ) = (/) ) ) | 
						
							| 29 |  | incom |  |-  ( S i^i ( A ( ball ` D ) r ) ) = ( ( A ( ball ` D ) r ) i^i S ) | 
						
							| 30 | 29 | eqeq1i |  |-  ( ( S i^i ( A ( ball ` D ) r ) ) = (/) <-> ( ( A ( ball ` D ) r ) i^i S ) = (/) ) | 
						
							| 31 | 28 30 | bitrdi |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ 0 <-> ( ( A ( ball ` D ) r ) i^i S ) = (/) ) ) | 
						
							| 32 | 31 | necon3bbid |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( -. r <_ 0 <-> ( ( A ( ball ` D ) r ) i^i S ) =/= (/) ) ) | 
						
							| 33 | 16 32 | mpbid |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( ( A ( ball ` D ) r ) i^i S ) =/= (/) ) | 
						
							| 34 |  | ssn0 |  |-  ( ( ( ( A ( ball ` D ) r ) i^i S ) C_ ( z i^i S ) /\ ( ( A ( ball ` D ) r ) i^i S ) =/= (/) ) -> ( z i^i S ) =/= (/) ) | 
						
							| 35 | 9 33 34 | syl2anc |  |-  ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( z i^i S ) =/= (/) ) | 
						
							| 36 | 7 35 | rexlimddv |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> ( z i^i S ) =/= (/) ) | 
						
							| 37 | 36 | expr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ z e. J ) -> ( A e. z -> ( z i^i S ) =/= (/) ) ) | 
						
							| 38 | 37 | ralrimiva |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A. z e. J ( A e. z -> ( z i^i S ) =/= (/) ) ) | 
						
							| 39 | 2 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 40 | 39 | 3ad2ant1 |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> J e. ( TopOn ` X ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> J e. ( TopOn ` X ) ) | 
						
							| 42 |  | topontop |  |-  ( J e. ( TopOn ` X ) -> J e. Top ) | 
						
							| 43 | 41 42 | syl |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> J e. Top ) | 
						
							| 44 |  | toponuni |  |-  ( J e. ( TopOn ` X ) -> X = U. J ) | 
						
							| 45 | 41 44 | syl |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> X = U. J ) | 
						
							| 46 | 20 45 | sseqtrd |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> S C_ U. J ) | 
						
							| 47 | 22 45 | eleqtrd |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A e. U. J ) | 
						
							| 48 |  | eqid |  |-  U. J = U. J | 
						
							| 49 | 48 | elcls |  |-  ( ( J e. Top /\ S C_ U. J /\ A e. U. J ) -> ( A e. ( ( cls ` J ) ` S ) <-> A. z e. J ( A e. z -> ( z i^i S ) =/= (/) ) ) ) | 
						
							| 50 | 43 46 47 49 | syl3anc |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> ( A e. ( ( cls ` J ) ` S ) <-> A. z e. J ( A e. z -> ( z i^i S ) =/= (/) ) ) ) | 
						
							| 51 | 38 50 | mpbird |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A e. ( ( cls ` J ) ` S ) ) | 
						
							| 52 |  | incom |  |-  ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) | 
						
							| 53 | 1 | metdsf |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) | 
						
							| 54 | 53 | ffvelcdmda |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. X ) -> ( F ` A ) e. ( 0 [,] +oo ) ) | 
						
							| 55 | 54 | 3impa |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( F ` A ) e. ( 0 [,] +oo ) ) | 
						
							| 56 |  | eliccxr |  |-  ( ( F ` A ) e. ( 0 [,] +oo ) -> ( F ` A ) e. RR* ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( F ` A ) e. RR* ) | 
						
							| 58 | 57 | xrleidd |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( F ` A ) <_ ( F ` A ) ) | 
						
							| 59 | 1 | metdsge |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) e. RR* ) -> ( ( F ` A ) <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) ) | 
						
							| 60 | 57 59 | mpdan |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( F ` A ) <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) ) | 
						
							| 61 | 58 60 | mpbid |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) | 
						
							| 62 | 52 61 | eqtrid |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = (/) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = (/) ) | 
						
							| 64 | 40 | ad2antrr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 65 | 64 42 | syl |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> J e. Top ) | 
						
							| 66 |  | simpll2 |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> S C_ X ) | 
						
							| 67 | 64 44 | syl |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> X = U. J ) | 
						
							| 68 | 66 67 | sseqtrd |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> S C_ U. J ) | 
						
							| 69 |  | simplr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> A e. ( ( cls ` J ) ` S ) ) | 
						
							| 70 |  | simpll1 |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> D e. ( *Met ` X ) ) | 
						
							| 71 |  | simpll3 |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> A e. X ) | 
						
							| 72 | 57 | ad2antrr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> ( F ` A ) e. RR* ) | 
						
							| 73 | 2 | blopn |  |-  ( ( D e. ( *Met ` X ) /\ A e. X /\ ( F ` A ) e. RR* ) -> ( A ( ball ` D ) ( F ` A ) ) e. J ) | 
						
							| 74 | 70 71 72 73 | syl3anc |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> ( A ( ball ` D ) ( F ` A ) ) e. J ) | 
						
							| 75 |  | simpr |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> 0 < ( F ` A ) ) | 
						
							| 76 |  | xblcntr |  |-  ( ( D e. ( *Met ` X ) /\ A e. X /\ ( ( F ` A ) e. RR* /\ 0 < ( F ` A ) ) ) -> A e. ( A ( ball ` D ) ( F ` A ) ) ) | 
						
							| 77 | 70 71 72 75 76 | syl112anc |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> A e. ( A ( ball ` D ) ( F ` A ) ) ) | 
						
							| 78 | 48 | clsndisj |  |-  ( ( ( J e. Top /\ S C_ U. J /\ A e. ( ( cls ` J ) ` S ) ) /\ ( ( A ( ball ` D ) ( F ` A ) ) e. J /\ A e. ( A ( ball ` D ) ( F ` A ) ) ) ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) =/= (/) ) | 
						
							| 79 | 65 68 69 74 77 78 | syl32anc |  |-  ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) =/= (/) ) | 
						
							| 80 | 79 | ex |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( 0 < ( F ` A ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) =/= (/) ) ) | 
						
							| 81 | 80 | necon2bd |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = (/) -> -. 0 < ( F ` A ) ) ) | 
						
							| 82 | 63 81 | mpd |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> -. 0 < ( F ` A ) ) | 
						
							| 83 |  | elxrge0 |  |-  ( ( F ` A ) e. ( 0 [,] +oo ) <-> ( ( F ` A ) e. RR* /\ 0 <_ ( F ` A ) ) ) | 
						
							| 84 | 83 | simprbi |  |-  ( ( F ` A ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` A ) ) | 
						
							| 85 | 55 84 | syl |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> 0 <_ ( F ` A ) ) | 
						
							| 86 |  | 0xr |  |-  0 e. RR* | 
						
							| 87 |  | xrleloe |  |-  ( ( 0 e. RR* /\ ( F ` A ) e. RR* ) -> ( 0 <_ ( F ` A ) <-> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) ) | 
						
							| 88 | 86 57 87 | sylancr |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( 0 <_ ( F ` A ) <-> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) ) | 
						
							| 89 | 85 88 | mpbid |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) | 
						
							| 90 | 89 | adantr |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) | 
						
							| 91 | 90 | ord |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( -. 0 < ( F ` A ) -> 0 = ( F ` A ) ) ) | 
						
							| 92 | 82 91 | mpd |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> 0 = ( F ` A ) ) | 
						
							| 93 | 92 | eqcomd |  |-  ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( F ` A ) = 0 ) | 
						
							| 94 | 51 93 | impbida |  |-  ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( F ` A ) = 0 <-> A e. ( ( cls ` J ) ` S ) ) ) |