Step |
Hyp |
Ref |
Expression |
1 |
|
metdscn.f |
|- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
2 |
|
simprr |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> B e. X ) |
3 |
|
simpr |
|- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> S C_ X ) |
4 |
3
|
sselda |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. S ) -> A e. X ) |
5 |
4
|
adantrr |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> A e. X ) |
6 |
2 5
|
jca |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( B e. X /\ A e. X ) ) |
7 |
1
|
metdstri |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( B e. X /\ A e. X ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
8 |
6 7
|
syldan |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
9 |
|
simpll |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> D e. ( *Met ` X ) ) |
10 |
|
xmetsym |
|- ( ( D e. ( *Met ` X ) /\ B e. X /\ A e. X ) -> ( B D A ) = ( A D B ) ) |
11 |
9 2 5 10
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( B D A ) = ( A D B ) ) |
12 |
1
|
metds0 |
|- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. S ) -> ( F ` A ) = 0 ) |
13 |
12
|
3expa |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. S ) -> ( F ` A ) = 0 ) |
14 |
13
|
adantrr |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` A ) = 0 ) |
15 |
11 14
|
oveq12d |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( ( A D B ) +e 0 ) ) |
16 |
|
xmetcl |
|- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
17 |
9 5 2 16
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( A D B ) e. RR* ) |
18 |
17
|
xaddid1d |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( A D B ) +e 0 ) = ( A D B ) ) |
19 |
15 18
|
eqtrd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( A D B ) ) |
20 |
8 19
|
breqtrd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` B ) <_ ( A D B ) ) |