| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metdscn.f |
|- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
| 2 |
|
simprr |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> B e. X ) |
| 3 |
|
simpr |
|- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> S C_ X ) |
| 4 |
3
|
sselda |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. S ) -> A e. X ) |
| 5 |
4
|
adantrr |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> A e. X ) |
| 6 |
2 5
|
jca |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( B e. X /\ A e. X ) ) |
| 7 |
1
|
metdstri |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( B e. X /\ A e. X ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
| 8 |
6 7
|
syldan |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
| 9 |
|
simpll |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> D e. ( *Met ` X ) ) |
| 10 |
|
xmetsym |
|- ( ( D e. ( *Met ` X ) /\ B e. X /\ A e. X ) -> ( B D A ) = ( A D B ) ) |
| 11 |
9 2 5 10
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( B D A ) = ( A D B ) ) |
| 12 |
1
|
metds0 |
|- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. S ) -> ( F ` A ) = 0 ) |
| 13 |
12
|
3expa |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. S ) -> ( F ` A ) = 0 ) |
| 14 |
13
|
adantrr |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` A ) = 0 ) |
| 15 |
11 14
|
oveq12d |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( ( A D B ) +e 0 ) ) |
| 16 |
|
xmetcl |
|- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
| 17 |
9 5 2 16
|
syl3anc |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( A D B ) e. RR* ) |
| 18 |
17
|
xaddridd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( A D B ) +e 0 ) = ( A D B ) ) |
| 19 |
15 18
|
eqtrd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( A D B ) ) |
| 20 |
8 19
|
breqtrd |
|- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` B ) <_ ( A D B ) ) |