| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metdscn.f |  |-  F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) | 
						
							| 2 |  | oveq1 |  |-  ( x = A -> ( x D y ) = ( A D y ) ) | 
						
							| 3 | 2 | mpteq2dv |  |-  ( x = A -> ( y e. S |-> ( x D y ) ) = ( y e. S |-> ( A D y ) ) ) | 
						
							| 4 | 3 | rneqd |  |-  ( x = A -> ran ( y e. S |-> ( x D y ) ) = ran ( y e. S |-> ( A D y ) ) ) | 
						
							| 5 | 4 | infeq1d |  |-  ( x = A -> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) = inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) ) | 
						
							| 6 |  | xrltso |  |-  < Or RR* | 
						
							| 7 | 6 | infex |  |-  inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) e. _V | 
						
							| 8 | 5 1 7 | fvmpt |  |-  ( A e. X -> ( F ` A ) = inf ( ran ( y e. S |-> ( A D y ) ) , RR* , < ) ) |