| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metequiv.3 |  |-  J = ( MetOpen ` C ) | 
						
							| 2 |  | metequiv.4 |  |-  K = ( MetOpen ` D ) | 
						
							| 3 |  | simprrr |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) | 
						
							| 4 |  | simplll |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> C e. ( *Met ` X ) ) | 
						
							| 5 |  | simplr |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> x e. X ) | 
						
							| 6 |  | simprlr |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s e. RR+ ) | 
						
							| 7 | 6 | rpxrd |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s e. RR* ) | 
						
							| 8 |  | simprll |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> r e. RR+ ) | 
						
							| 9 | 8 | rpxrd |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> r e. RR* ) | 
						
							| 10 |  | simprrl |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> s <_ r ) | 
						
							| 11 |  | ssbl |  |-  ( ( ( C e. ( *Met ` X ) /\ x e. X ) /\ ( s e. RR* /\ r e. RR* ) /\ s <_ r ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` C ) r ) ) | 
						
							| 12 | 4 5 7 9 10 11 | syl221anc |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` C ) r ) ) | 
						
							| 13 | 3 12 | eqsstrrd |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) | 
						
							| 14 |  | simpllr |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> D e. ( *Met ` X ) ) | 
						
							| 15 |  | ssbl |  |-  ( ( ( D e. ( *Met ` X ) /\ x e. X ) /\ ( s e. RR* /\ r e. RR* ) /\ s <_ r ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` D ) r ) ) | 
						
							| 16 | 14 5 7 9 10 15 | syl221anc |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` D ) s ) C_ ( x ( ball ` D ) r ) ) | 
						
							| 17 | 3 16 | eqsstrd |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) | 
						
							| 18 | 13 17 | jca |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( ( r e. RR+ /\ s e. RR+ ) /\ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) | 
						
							| 19 | 18 | expr |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ ( r e. RR+ /\ s e. RR+ ) ) -> ( ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 20 | 19 | anassrs |  |-  ( ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) /\ s e. RR+ ) -> ( ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 21 | 20 | reximdva |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) -> ( E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> E. s e. RR+ ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 22 |  | r19.40 |  |-  ( E. s e. RR+ ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) | 
						
							| 23 | 21 22 | syl6 |  |-  ( ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) /\ r e. RR+ ) -> ( E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 24 | 23 | ralimdva |  |-  ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> A. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 25 |  | r19.26 |  |-  ( A. r e. RR+ ( E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) <-> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) | 
						
							| 26 | 24 25 | imbitrdi |  |-  ( ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) /\ x e. X ) -> ( A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 27 | 26 | ralimdva |  |-  ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 28 | 1 2 | metequiv |  |-  ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J = K <-> A. x e. X ( A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) /\ A. r e. RR+ E. s e. RR+ ( x ( ball ` C ) s ) C_ ( x ( ball ` D ) r ) ) ) ) | 
						
							| 29 | 27 28 | sylibrd |  |-  ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( A. x e. X A. r e. RR+ E. s e. RR+ ( s <_ r /\ ( x ( ball ` C ) s ) = ( x ( ball ` D ) s ) ) -> J = K ) ) |