Description: Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | metf | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metflem | |- ( D e. ( Met ` X ) -> ( D : ( X X. X ) --> RR /\ A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) ) |
|
2 | 1 | simpld | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |