Description: Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metf | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metflem | |- ( D e. ( Met ` X ) -> ( D : ( X X. X ) --> RR /\ A. x e. X A. y e. X ( ( ( x D y ) = 0 <-> x = y ) /\ A. z e. X ( x D y ) <_ ( ( z D x ) + ( z D y ) ) ) ) ) |
|
| 2 | 1 | simpld | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |