Description: The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of Gleason p. 223 and its converse. (Contributed by NM, 27-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | metgt0 | |- ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
2 | xmetgt0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) ) |
|
3 | 1 2 | syl3an1 | |- ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) ) |