Metamath Proof Explorer


Theorem metgt0

Description: The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of Gleason p. 223 and its converse. (Contributed by NM, 27-Aug-2006)

Ref Expression
Assertion metgt0
|- ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) )

Proof

Step Hyp Ref Expression
1 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
2 xmetgt0
 |-  ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) )
3 1 2 syl3an1
 |-  ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( A =/= B <-> 0 < ( A D B ) ) )