| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metf |
|- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
| 2 |
|
frel |
|- ( D : ( X X. X ) --> RR -> Rel D ) |
| 3 |
|
reldm0 |
|- ( Rel D -> ( D = (/) <-> dom D = (/) ) ) |
| 4 |
1 2 3
|
3syl |
|- ( D e. ( Met ` X ) -> ( D = (/) <-> dom D = (/) ) ) |
| 5 |
1
|
fdmd |
|- ( D e. ( Met ` X ) -> dom D = ( X X. X ) ) |
| 6 |
5
|
eqeq1d |
|- ( D e. ( Met ` X ) -> ( dom D = (/) <-> ( X X. X ) = (/) ) ) |
| 7 |
4 6
|
bitrd |
|- ( D e. ( Met ` X ) -> ( D = (/) <-> ( X X. X ) = (/) ) ) |
| 8 |
|
xpeq0 |
|- ( ( X X. X ) = (/) <-> ( X = (/) \/ X = (/) ) ) |
| 9 |
|
oridm |
|- ( ( X = (/) \/ X = (/) ) <-> X = (/) ) |
| 10 |
8 9
|
bitri |
|- ( ( X X. X ) = (/) <-> X = (/) ) |
| 11 |
7 10
|
bitrdi |
|- ( D e. ( Met ` X ) -> ( D = (/) <-> X = (/) ) ) |
| 12 |
11
|
necon3bid |
|- ( D e. ( Met ` X ) -> ( D =/= (/) <-> X =/= (/) ) ) |