| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metf |  |-  ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) | 
						
							| 2 |  | frel |  |-  ( D : ( X X. X ) --> RR -> Rel D ) | 
						
							| 3 |  | reldm0 |  |-  ( Rel D -> ( D = (/) <-> dom D = (/) ) ) | 
						
							| 4 | 1 2 3 | 3syl |  |-  ( D e. ( Met ` X ) -> ( D = (/) <-> dom D = (/) ) ) | 
						
							| 5 | 1 | fdmd |  |-  ( D e. ( Met ` X ) -> dom D = ( X X. X ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( D e. ( Met ` X ) -> ( dom D = (/) <-> ( X X. X ) = (/) ) ) | 
						
							| 7 | 4 6 | bitrd |  |-  ( D e. ( Met ` X ) -> ( D = (/) <-> ( X X. X ) = (/) ) ) | 
						
							| 8 |  | xpeq0 |  |-  ( ( X X. X ) = (/) <-> ( X = (/) \/ X = (/) ) ) | 
						
							| 9 |  | oridm |  |-  ( ( X = (/) \/ X = (/) ) <-> X = (/) ) | 
						
							| 10 | 8 9 | bitri |  |-  ( ( X X. X ) = (/) <-> X = (/) ) | 
						
							| 11 | 7 10 | bitrdi |  |-  ( D e. ( Met ` X ) -> ( D = (/) <-> X = (/) ) ) | 
						
							| 12 | 11 | necon3bid |  |-  ( D e. ( Met ` X ) -> ( D =/= (/) <-> X =/= (/) ) ) |