| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metf |
|- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
| 2 |
|
fdm |
|- ( D : ( X X. X ) --> RR -> dom D = ( X X. X ) ) |
| 3 |
|
metreslem |
|- ( dom D = ( X X. X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |
| 4 |
1 2 3
|
3syl |
|- ( D e. ( Met ` X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |
| 5 |
|
inss1 |
|- ( X i^i R ) C_ X |
| 6 |
|
metres2 |
|- ( ( D e. ( Met ` X ) /\ ( X i^i R ) C_ X ) -> ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) e. ( Met ` ( X i^i R ) ) ) |
| 7 |
5 6
|
mpan2 |
|- ( D e. ( Met ` X ) -> ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) e. ( Met ` ( X i^i R ) ) ) |
| 8 |
4 7
|
eqeltrd |
|- ( D e. ( Met ` X ) -> ( D |` ( R X. R ) ) e. ( Met ` ( X i^i R ) ) ) |