Metamath Proof Explorer


Theorem metres2

Description: Lemma for metres . (Contributed by FL, 12-Oct-2006) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion metres2
|- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( Met ` R ) )

Proof

Step Hyp Ref Expression
1 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
2 xmetres2
 |-  ( ( D e. ( *Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( *Met ` R ) )
3 1 2 sylan
 |-  ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( *Met ` R ) )
4 metf
 |-  ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR )
5 4 adantr
 |-  ( ( D e. ( Met ` X ) /\ R C_ X ) -> D : ( X X. X ) --> RR )
6 simpr
 |-  ( ( D e. ( Met ` X ) /\ R C_ X ) -> R C_ X )
7 xpss12
 |-  ( ( R C_ X /\ R C_ X ) -> ( R X. R ) C_ ( X X. X ) )
8 6 7 sylancom
 |-  ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( R X. R ) C_ ( X X. X ) )
9 5 8 fssresd
 |-  ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) : ( R X. R ) --> RR )
10 ismet2
 |-  ( ( D |` ( R X. R ) ) e. ( Met ` R ) <-> ( ( D |` ( R X. R ) ) e. ( *Met ` R ) /\ ( D |` ( R X. R ) ) : ( R X. R ) --> RR ) )
11 3 9 10 sylanbrc
 |-  ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( Met ` R ) )