Step |
Hyp |
Ref |
Expression |
1 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
2 |
|
xmetres2 |
|- ( ( D e. ( *Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( *Met ` R ) ) |
3 |
1 2
|
sylan |
|- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( *Met ` R ) ) |
4 |
|
metf |
|- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
5 |
4
|
adantr |
|- ( ( D e. ( Met ` X ) /\ R C_ X ) -> D : ( X X. X ) --> RR ) |
6 |
|
simpr |
|- ( ( D e. ( Met ` X ) /\ R C_ X ) -> R C_ X ) |
7 |
|
xpss12 |
|- ( ( R C_ X /\ R C_ X ) -> ( R X. R ) C_ ( X X. X ) ) |
8 |
6 7
|
sylancom |
|- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( R X. R ) C_ ( X X. X ) ) |
9 |
5 8
|
fssresd |
|- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) : ( R X. R ) --> RR ) |
10 |
|
ismet2 |
|- ( ( D |` ( R X. R ) ) e. ( Met ` R ) <-> ( ( D |` ( R X. R ) ) e. ( *Met ` R ) /\ ( D |` ( R X. R ) ) : ( R X. R ) --> RR ) ) |
11 |
3 9 10
|
sylanbrc |
|- ( ( D e. ( Met ` X ) /\ R C_ X ) -> ( D |` ( R X. R ) ) e. ( Met ` R ) ) |