| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resdmres |
|- ( D |` dom ( D |` ( R X. R ) ) ) = ( D |` ( R X. R ) ) |
| 2 |
|
ineq2 |
|- ( dom D = ( X X. X ) -> ( ( R X. R ) i^i dom D ) = ( ( R X. R ) i^i ( X X. X ) ) ) |
| 3 |
|
dmres |
|- dom ( D |` ( R X. R ) ) = ( ( R X. R ) i^i dom D ) |
| 4 |
|
inxp |
|- ( ( X X. X ) i^i ( R X. R ) ) = ( ( X i^i R ) X. ( X i^i R ) ) |
| 5 |
|
incom |
|- ( ( X X. X ) i^i ( R X. R ) ) = ( ( R X. R ) i^i ( X X. X ) ) |
| 6 |
4 5
|
eqtr3i |
|- ( ( X i^i R ) X. ( X i^i R ) ) = ( ( R X. R ) i^i ( X X. X ) ) |
| 7 |
2 3 6
|
3eqtr4g |
|- ( dom D = ( X X. X ) -> dom ( D |` ( R X. R ) ) = ( ( X i^i R ) X. ( X i^i R ) ) ) |
| 8 |
7
|
reseq2d |
|- ( dom D = ( X X. X ) -> ( D |` dom ( D |` ( R X. R ) ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |
| 9 |
1 8
|
eqtr3id |
|- ( dom D = ( X X. X ) -> ( D |` ( R X. R ) ) = ( D |` ( ( X i^i R ) X. ( X i^i R ) ) ) ) |