| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ A e. X /\ C e. X ) -> ( A D C ) e. RR ) | 
						
							| 2 | 1 | 3adant3r2 |  |-  ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D C ) e. RR ) | 
						
							| 3 |  | metcl |  |-  ( ( D e. ( Met ` X ) /\ B e. X /\ C e. X ) -> ( B D C ) e. RR ) | 
						
							| 4 | 3 | 3adant3r1 |  |-  ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) e. RR ) | 
						
							| 5 |  | eqid |  |-  ( dist ` RR*s ) = ( dist ` RR*s ) | 
						
							| 6 | 5 | xrsdsreval |  |-  ( ( ( A D C ) e. RR /\ ( B D C ) e. RR ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) = ( abs ` ( ( A D C ) - ( B D C ) ) ) ) | 
						
							| 7 | 2 4 6 | syl2anc |  |-  ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) = ( abs ` ( ( A D C ) - ( B D C ) ) ) ) | 
						
							| 8 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 9 | 5 | xmetrtri2 |  |-  ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) <_ ( A D B ) ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) <_ ( A D B ) ) | 
						
							| 11 | 7 10 | eqbrtrrd |  |-  ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A D C ) - ( B D C ) ) ) <_ ( A D B ) ) |