Step |
Hyp |
Ref |
Expression |
1 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ A e. X /\ C e. X ) -> ( A D C ) e. RR ) |
2 |
1
|
3adant3r2 |
|- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D C ) e. RR ) |
3 |
|
metcl |
|- ( ( D e. ( Met ` X ) /\ B e. X /\ C e. X ) -> ( B D C ) e. RR ) |
4 |
3
|
3adant3r1 |
|- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) e. RR ) |
5 |
|
eqid |
|- ( dist ` RR*s ) = ( dist ` RR*s ) |
6 |
5
|
xrsdsreval |
|- ( ( ( A D C ) e. RR /\ ( B D C ) e. RR ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) = ( abs ` ( ( A D C ) - ( B D C ) ) ) ) |
7 |
2 4 6
|
syl2anc |
|- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) = ( abs ` ( ( A D C ) - ( B D C ) ) ) ) |
8 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
9 |
5
|
xmetrtri2 |
|- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) <_ ( A D B ) ) |
10 |
8 9
|
sylan |
|- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) <_ ( A D B ) ) |
11 |
7 10
|
eqbrtrrd |
|- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A D C ) - ( B D C ) ) ) <_ ( A D B ) ) |