Step |
Hyp |
Ref |
Expression |
1 |
|
metequiv.3 |
|- J = ( MetOpen ` C ) |
2 |
|
metequiv.4 |
|- K = ( MetOpen ` D ) |
3 |
|
metss2.1 |
|- ( ph -> C e. ( Met ` X ) ) |
4 |
|
metss2.2 |
|- ( ph -> D e. ( Met ` X ) ) |
5 |
|
metss2.3 |
|- ( ph -> R e. RR+ ) |
6 |
|
metss2.4 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
7 |
|
simpr |
|- ( ( x e. X /\ r e. RR+ ) -> r e. RR+ ) |
8 |
|
rpdivcl |
|- ( ( r e. RR+ /\ R e. RR+ ) -> ( r / R ) e. RR+ ) |
9 |
7 5 8
|
syl2anr |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( r / R ) e. RR+ ) |
10 |
1 2 3 4 5 6
|
metss2lem |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
11 |
|
oveq2 |
|- ( s = ( r / R ) -> ( x ( ball ` D ) s ) = ( x ( ball ` D ) ( r / R ) ) ) |
12 |
11
|
sseq1d |
|- ( s = ( r / R ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) <-> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
13 |
12
|
rspcev |
|- ( ( ( r / R ) e. RR+ /\ ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
14 |
9 10 13
|
syl2anc |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
15 |
14
|
ralrimivva |
|- ( ph -> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
16 |
|
metxmet |
|- ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) |
17 |
3 16
|
syl |
|- ( ph -> C e. ( *Met ` X ) ) |
18 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
19 |
4 18
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
20 |
1 2
|
metss |
|- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
21 |
17 19 20
|
syl2anc |
|- ( ph -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
22 |
15 21
|
mpbird |
|- ( ph -> J C_ K ) |