| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metequiv.3 |
|- J = ( MetOpen ` C ) |
| 2 |
|
metequiv.4 |
|- K = ( MetOpen ` D ) |
| 3 |
|
metss2.1 |
|- ( ph -> C e. ( Met ` X ) ) |
| 4 |
|
metss2.2 |
|- ( ph -> D e. ( Met ` X ) ) |
| 5 |
|
metss2.3 |
|- ( ph -> R e. RR+ ) |
| 6 |
|
metss2.4 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) |
| 7 |
|
simpr |
|- ( ( x e. X /\ r e. RR+ ) -> r e. RR+ ) |
| 8 |
|
rpdivcl |
|- ( ( r e. RR+ /\ R e. RR+ ) -> ( r / R ) e. RR+ ) |
| 9 |
7 5 8
|
syl2anr |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( r / R ) e. RR+ ) |
| 10 |
1 2 3 4 5 6
|
metss2lem |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) |
| 11 |
|
oveq2 |
|- ( s = ( r / R ) -> ( x ( ball ` D ) s ) = ( x ( ball ` D ) ( r / R ) ) ) |
| 12 |
11
|
sseq1d |
|- ( s = ( r / R ) -> ( ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) <-> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) |
| 13 |
12
|
rspcev |
|- ( ( ( r / R ) e. RR+ /\ ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 14 |
9 10 13
|
syl2anc |
|- ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 15 |
14
|
ralrimivva |
|- ( ph -> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) |
| 16 |
|
metxmet |
|- ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) |
| 17 |
3 16
|
syl |
|- ( ph -> C e. ( *Met ` X ) ) |
| 18 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 19 |
4 18
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
| 20 |
1 2
|
metss |
|- ( ( C e. ( *Met ` X ) /\ D e. ( *Met ` X ) ) -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 21 |
17 19 20
|
syl2anc |
|- ( ph -> ( J C_ K <-> A. x e. X A. r e. RR+ E. s e. RR+ ( x ( ball ` D ) s ) C_ ( x ( ball ` C ) r ) ) ) |
| 22 |
15 21
|
mpbird |
|- ( ph -> J C_ K ) |