Metamath Proof Explorer


Theorem metsym

Description: The distance function of a metric space is symmetric. Definition 14-1.1(c) of Gleason p. 223. (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion metsym
|- ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) )

Proof

Step Hyp Ref Expression
1 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
2 xmetsym
 |-  ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) )
3 1 2 syl3an1
 |-  ( ( D e. ( Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) )