Step |
Hyp |
Ref |
Expression |
1 |
|
metuval |
|- ( D e. ( PsMet ` X ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
2 |
1
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
3 |
2
|
eleq2d |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) ) |
4 |
|
oveq2 |
|- ( a = e -> ( 0 [,) a ) = ( 0 [,) e ) ) |
5 |
4
|
imaeq2d |
|- ( a = e -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) e ) ) ) |
6 |
5
|
cbvmptv |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( e e. RR+ |-> ( `' D " ( 0 [,) e ) ) ) |
7 |
6
|
rneqi |
|- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( e e. RR+ |-> ( `' D " ( 0 [,) e ) ) ) |
8 |
7
|
metustfbas |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) ) |
9 |
|
elfg |
|- ( ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) -> ( V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |
10 |
8 9
|
syl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |
11 |
3 10
|
bitrd |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |