| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metuval |  |-  ( D e. ( PsMet ` X ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) | 
						
							| 3 | 2 | eleq2d |  |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( a = e -> ( 0 [,) a ) = ( 0 [,) e ) ) | 
						
							| 5 | 4 | imaeq2d |  |-  ( a = e -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) e ) ) ) | 
						
							| 6 | 5 | cbvmptv |  |-  ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( e e. RR+ |-> ( `' D " ( 0 [,) e ) ) ) | 
						
							| 7 | 6 | rneqi |  |-  ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( e e. RR+ |-> ( `' D " ( 0 [,) e ) ) ) | 
						
							| 8 | 7 | metustfbas |  |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) ) | 
						
							| 9 |  | elfg |  |-  ( ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) e. ( fBas ` ( X X. X ) ) -> ( V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) | 
						
							| 11 | 3 10 | bitrd |  |-  ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |