Step |
Hyp |
Ref |
Expression |
1 |
|
metuel2.u |
|- U = ( metUnif ` D ) |
2 |
1
|
eleq2i |
|- ( V e. U <-> V e. ( metUnif ` D ) ) |
3 |
2
|
a1i |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. U <-> V e. ( metUnif ` D ) ) ) |
4 |
|
metuel |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. ( metUnif ` D ) <-> ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) ) ) |
5 |
|
oveq2 |
|- ( a = d -> ( 0 [,) a ) = ( 0 [,) d ) ) |
6 |
5
|
imaeq2d |
|- ( a = d -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) d ) ) ) |
7 |
6
|
cbvmptv |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( d e. RR+ |-> ( `' D " ( 0 [,) d ) ) ) |
8 |
7
|
elrnmpt |
|- ( w e. _V -> ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) ) ) |
9 |
8
|
elv |
|- ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) ) |
10 |
9
|
anbi1i |
|- ( ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) <-> ( E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
11 |
|
r19.41v |
|- ( E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> ( E. d e. RR+ w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
12 |
10 11
|
bitr4i |
|- ( ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) <-> E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
13 |
12
|
exbii |
|- ( E. w ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) <-> E. w E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
14 |
|
df-rex |
|- ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. w ( w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) /\ w C_ V ) ) |
15 |
|
rexcom4 |
|- ( E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> E. w E. d e. RR+ ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
16 |
13 14 15
|
3bitr4i |
|- ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) ) |
17 |
|
cnvexg |
|- ( D e. ( PsMet ` X ) -> `' D e. _V ) |
18 |
|
imaexg |
|- ( `' D e. _V -> ( `' D " ( 0 [,) d ) ) e. _V ) |
19 |
|
sseq1 |
|- ( w = ( `' D " ( 0 [,) d ) ) -> ( w C_ V <-> ( `' D " ( 0 [,) d ) ) C_ V ) ) |
20 |
19
|
ceqsexgv |
|- ( ( `' D " ( 0 [,) d ) ) e. _V -> ( E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> ( `' D " ( 0 [,) d ) ) C_ V ) ) |
21 |
17 18 20
|
3syl |
|- ( D e. ( PsMet ` X ) -> ( E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> ( `' D " ( 0 [,) d ) ) C_ V ) ) |
22 |
21
|
rexbidv |
|- ( D e. ( PsMet ` X ) -> ( E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V ) ) |
23 |
22
|
adantr |
|- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. d e. RR+ E. w ( w = ( `' D " ( 0 [,) d ) ) /\ w C_ V ) <-> E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V ) ) |
24 |
16 23
|
syl5bb |
|- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V ) ) |
25 |
|
cnvimass |
|- ( `' D " ( 0 [,) d ) ) C_ dom D |
26 |
|
simpll |
|- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> D e. ( PsMet ` X ) ) |
27 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
28 |
|
fdm |
|- ( D : ( X X. X ) --> RR* -> dom D = ( X X. X ) ) |
29 |
26 27 28
|
3syl |
|- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> dom D = ( X X. X ) ) |
30 |
25 29
|
sseqtrid |
|- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( `' D " ( 0 [,) d ) ) C_ ( X X. X ) ) |
31 |
|
ssrel2 |
|- ( ( `' D " ( 0 [,) d ) ) C_ ( X X. X ) -> ( ( `' D " ( 0 [,) d ) ) C_ V <-> A. x e. X A. y e. X ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
32 |
30 31
|
syl |
|- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( ( `' D " ( 0 [,) d ) ) C_ V <-> A. x e. X A. y e. X ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
33 |
|
simplr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> x e. X ) |
34 |
|
simpr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> y e. X ) |
35 |
33 34
|
opelxpd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> <. x , y >. e. ( X X. X ) ) |
36 |
35
|
biantrurd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( D ` <. x , y >. ) e. ( 0 [,) d ) <-> ( <. x , y >. e. ( X X. X ) /\ ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) ) |
37 |
|
psmetcl |
|- ( ( D e. ( PsMet ` X ) /\ x e. X /\ y e. X ) -> ( x D y ) e. RR* ) |
38 |
37
|
ad5ant145 |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( x D y ) e. RR* ) |
39 |
38
|
3biant1d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( 0 <_ ( x D y ) /\ ( x D y ) < d ) <-> ( ( x D y ) e. RR* /\ 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
40 |
|
psmetge0 |
|- ( ( D e. ( PsMet ` X ) /\ x e. X /\ y e. X ) -> 0 <_ ( x D y ) ) |
41 |
40
|
biantrurd |
|- ( ( D e. ( PsMet ` X ) /\ x e. X /\ y e. X ) -> ( ( x D y ) < d <-> ( 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
42 |
41
|
ad5ant145 |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> ( 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
43 |
|
0xr |
|- 0 e. RR* |
44 |
|
simpllr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> d e. RR+ ) |
45 |
44
|
rpxrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> d e. RR* ) |
46 |
|
elico1 |
|- ( ( 0 e. RR* /\ d e. RR* ) -> ( ( x D y ) e. ( 0 [,) d ) <-> ( ( x D y ) e. RR* /\ 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
47 |
43 45 46
|
sylancr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) e. ( 0 [,) d ) <-> ( ( x D y ) e. RR* /\ 0 <_ ( x D y ) /\ ( x D y ) < d ) ) ) |
48 |
39 42 47
|
3bitr4d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> ( x D y ) e. ( 0 [,) d ) ) ) |
49 |
|
df-ov |
|- ( x D y ) = ( D ` <. x , y >. ) |
50 |
49
|
eleq1i |
|- ( ( x D y ) e. ( 0 [,) d ) <-> ( D ` <. x , y >. ) e. ( 0 [,) d ) ) |
51 |
48 50
|
bitrdi |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) |
52 |
|
simp-4l |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> D e. ( PsMet ` X ) ) |
53 |
|
ffn |
|- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
54 |
|
elpreima |
|- ( D Fn ( X X. X ) -> ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) <-> ( <. x , y >. e. ( X X. X ) /\ ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) ) |
55 |
52 27 53 54
|
4syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) <-> ( <. x , y >. e. ( X X. X ) /\ ( D ` <. x , y >. ) e. ( 0 [,) d ) ) ) ) |
56 |
36 51 55
|
3bitr4d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ x e. X ) /\ y e. X ) -> ( ( x D y ) < d <-> <. x , y >. e. ( `' D " ( 0 [,) d ) ) ) ) |
57 |
56
|
anasss |
|- ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( x D y ) < d <-> <. x , y >. e. ( `' D " ( 0 [,) d ) ) ) ) |
58 |
|
df-br |
|- ( x V y <-> <. x , y >. e. V ) |
59 |
58
|
a1i |
|- ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( x V y <-> <. x , y >. e. V ) ) |
60 |
57 59
|
imbi12d |
|- ( ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) /\ ( x e. X /\ y e. X ) ) -> ( ( ( x D y ) < d -> x V y ) <-> ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
61 |
60
|
2ralbidva |
|- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) <-> A. x e. X A. y e. X ( <. x , y >. e. ( `' D " ( 0 [,) d ) ) -> <. x , y >. e. V ) ) ) |
62 |
32 61
|
bitr4d |
|- ( ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) /\ d e. RR+ ) -> ( ( `' D " ( 0 [,) d ) ) C_ V <-> A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) |
63 |
62
|
rexbidva |
|- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. d e. RR+ ( `' D " ( 0 [,) d ) ) C_ V <-> E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) |
64 |
24 63
|
bitrd |
|- ( ( D e. ( PsMet ` X ) /\ V C_ ( X X. X ) ) -> ( E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V <-> E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) |
65 |
64
|
pm5.32da |
|- ( D e. ( PsMet ` X ) -> ( ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) <-> ( V C_ ( X X. X ) /\ E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) ) |
66 |
65
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( V C_ ( X X. X ) /\ E. w e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) w C_ V ) <-> ( V C_ ( X X. X ) /\ E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) ) |
67 |
3 4 66
|
3bitrd |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( V e. U <-> ( V C_ ( X X. X ) /\ E. d e. RR+ A. x e. X A. y e. X ( ( x D y ) < d -> x V y ) ) ) ) |