Step |
Hyp |
Ref |
Expression |
1 |
|
metust.1 |
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
2 |
|
simp-4r |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> D e. ( PsMet ` X ) ) |
3 |
|
simplr |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> a e. RR+ ) |
4 |
3
|
rphalfcld |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( a / 2 ) e. RR+ ) |
5 |
|
eqidd |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
6 |
|
oveq2 |
|- ( b = ( a / 2 ) -> ( 0 [,) b ) = ( 0 [,) ( a / 2 ) ) ) |
7 |
6
|
imaeq2d |
|- ( b = ( a / 2 ) -> ( `' D " ( 0 [,) b ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
8 |
7
|
rspceeqv |
|- ( ( ( a / 2 ) e. RR+ /\ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) |
9 |
4 5 8
|
syl2anc |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) |
10 |
|
oveq2 |
|- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
11 |
10
|
imaeq2d |
|- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
12 |
11
|
cbvmptv |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
13 |
12
|
rneqi |
|- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
14 |
1 13
|
eqtri |
|- F = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
15 |
14
|
metustel |
|- ( D e. ( PsMet ` X ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F <-> E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) ) |
16 |
15
|
biimpar |
|- ( ( D e. ( PsMet ` X ) /\ E. b e. RR+ ( `' D " ( 0 [,) ( a / 2 ) ) ) = ( `' D " ( 0 [,) b ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F ) |
17 |
2 9 16
|
syl2anc |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F ) |
18 |
|
relco |
|- Rel ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
19 |
18
|
a1i |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> Rel ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
20 |
|
cossxp |
|- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
21 |
|
cnvimass |
|- ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom D |
22 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
23 |
21 22
|
fssdm |
|- ( D e. ( PsMet ` X ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) ) |
24 |
|
dmss |
|- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> dom ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom ( X X. X ) ) |
25 |
|
rnss |
|- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) ) |
26 |
|
xpss12 |
|- ( ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ dom ( X X. X ) /\ ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
27 |
24 25 26
|
syl2anc |
|- ( ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
28 |
23 27
|
syl |
|- ( D e. ( PsMet ` X ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
29 |
28
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( dom ( X X. X ) X. ran ( X X. X ) ) ) |
30 |
|
dmxp |
|- ( X =/= (/) -> dom ( X X. X ) = X ) |
31 |
|
rnxp |
|- ( X =/= (/) -> ran ( X X. X ) = X ) |
32 |
30 31
|
xpeq12d |
|- ( X =/= (/) -> ( dom ( X X. X ) X. ran ( X X. X ) ) = ( X X. X ) ) |
33 |
32
|
adantr |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( X X. X ) X. ran ( X X. X ) ) = ( X X. X ) ) |
34 |
29 33
|
sseqtrd |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( dom ( `' D " ( 0 [,) ( a / 2 ) ) ) X. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) ) |
35 |
20 34
|
sstrid |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) ) |
36 |
35
|
ad3antrrr |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ ( X X. X ) ) |
37 |
36
|
sselda |
|- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. ( X X. X ) ) |
38 |
|
opelxp |
|- ( <. p , q >. e. ( X X. X ) <-> ( p e. X /\ q e. X ) ) |
39 |
37 38
|
sylib |
|- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> ( p e. X /\ q e. X ) ) |
40 |
|
simpll |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) ) |
41 |
|
simprl |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> p e. X ) |
42 |
|
simprr |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> q e. X ) |
43 |
|
simplr |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
44 |
|
simplll |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) ) |
45 |
44
|
simp1d |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) ) |
46 |
45 2
|
syl |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D e. ( PsMet ` X ) ) |
47 |
45 3
|
syl |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR+ ) |
48 |
46 47
|
jca |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D e. ( PsMet ` X ) /\ a e. RR+ ) ) |
49 |
44
|
simp2d |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p e. X ) |
50 |
44
|
simp3d |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> q e. X ) |
51 |
48 49 50
|
3jca |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) ) |
52 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X ) |
53 |
|
simprl |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) |
54 |
|
simprr |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) |
55 |
|
simpll |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) ) |
56 |
55
|
simp1d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D e. ( PsMet ` X ) /\ a e. RR+ ) ) |
57 |
56
|
simpld |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D e. ( PsMet ` X ) ) |
58 |
22
|
ffund |
|- ( D e. ( PsMet ` X ) -> Fun D ) |
59 |
57 58
|
syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> Fun D ) |
60 |
55
|
simp2d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p e. X ) |
61 |
55
|
simp3d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> q e. X ) |
62 |
60 61
|
opelxpd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , q >. e. ( X X. X ) ) |
63 |
22
|
fdmd |
|- ( D e. ( PsMet ` X ) -> dom D = ( X X. X ) ) |
64 |
57 63
|
syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> dom D = ( X X. X ) ) |
65 |
62 64
|
eleqtrrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , q >. e. dom D ) |
66 |
|
0xr |
|- 0 e. RR* |
67 |
66
|
a1i |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 e. RR* ) |
68 |
56
|
simprd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR+ ) |
69 |
68
|
rpxrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR* ) |
70 |
57 22
|
syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> D : ( X X. X ) --> RR* ) |
71 |
70 62
|
ffvelrnd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) e. RR* ) |
72 |
|
psmetge0 |
|- ( ( D e. ( PsMet ` X ) /\ p e. X /\ q e. X ) -> 0 <_ ( p D q ) ) |
73 |
57 60 61 72
|
syl3anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 <_ ( p D q ) ) |
74 |
|
df-ov |
|- ( p D q ) = ( D ` <. p , q >. ) |
75 |
73 74
|
breqtrdi |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 <_ ( D ` <. p , q >. ) ) |
76 |
74 71
|
eqeltrid |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) e. RR* ) |
77 |
|
0red |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> 0 e. RR ) |
78 |
68
|
rpred |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> a e. RR ) |
79 |
78
|
rehalfcld |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( a / 2 ) e. RR ) |
80 |
79
|
rexrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( a / 2 ) e. RR* ) |
81 |
|
df-ov |
|- ( p D r ) = ( D ` <. p , r >. ) |
82 |
|
simplr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X ) |
83 |
60 82
|
opelxpd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. ( X X. X ) ) |
84 |
83 64
|
eleqtrrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. dom D ) |
85 |
|
simprl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) |
86 |
|
df-br |
|- ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r <-> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
87 |
85 86
|
sylib |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
88 |
|
fvimacnv |
|- ( ( Fun D /\ <. p , r >. e. dom D ) -> ( ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) <-> <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
89 |
88
|
biimpar |
|- ( ( ( Fun D /\ <. p , r >. e. dom D ) /\ <. p , r >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) ) |
90 |
59 84 87 89
|
syl21anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , r >. ) e. ( 0 [,) ( a / 2 ) ) ) |
91 |
81 90
|
eqeltrid |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) |
92 |
|
elico2 |
|- ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) -> ( ( p D r ) e. ( 0 [,) ( a / 2 ) ) <-> ( ( p D r ) e. RR /\ 0 <_ ( p D r ) /\ ( p D r ) < ( a / 2 ) ) ) ) |
93 |
92
|
biimpa |
|- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( ( p D r ) e. RR /\ 0 <_ ( p D r ) /\ ( p D r ) < ( a / 2 ) ) ) |
94 |
93
|
simp1d |
|- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( p D r ) e. RR ) |
95 |
77 80 91 94
|
syl21anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) e. RR ) |
96 |
|
df-ov |
|- ( r D q ) = ( D ` <. r , q >. ) |
97 |
82 61
|
opelxpd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. ( X X. X ) ) |
98 |
97 64
|
eleqtrrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. dom D ) |
99 |
|
simprr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) |
100 |
|
df-br |
|- ( r ( `' D " ( 0 [,) ( a / 2 ) ) ) q <-> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
101 |
99 100
|
sylib |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
102 |
|
fvimacnv |
|- ( ( Fun D /\ <. r , q >. e. dom D ) -> ( ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) <-> <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
103 |
102
|
biimpar |
|- ( ( ( Fun D /\ <. r , q >. e. dom D ) /\ <. r , q >. e. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) ) |
104 |
59 98 101 103
|
syl21anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. r , q >. ) e. ( 0 [,) ( a / 2 ) ) ) |
105 |
96 104
|
eqeltrid |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) |
106 |
|
elico2 |
|- ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) -> ( ( r D q ) e. ( 0 [,) ( a / 2 ) ) <-> ( ( r D q ) e. RR /\ 0 <_ ( r D q ) /\ ( r D q ) < ( a / 2 ) ) ) ) |
107 |
106
|
biimpa |
|- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( ( r D q ) e. RR /\ 0 <_ ( r D q ) /\ ( r D q ) < ( a / 2 ) ) ) |
108 |
107
|
simp1d |
|- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( r D q ) e. RR ) |
109 |
77 80 105 108
|
syl21anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) e. RR ) |
110 |
95 109
|
rexaddd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) = ( ( p D r ) + ( r D q ) ) ) |
111 |
95 109
|
readdcld |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) + ( r D q ) ) e. RR ) |
112 |
110 111
|
eqeltrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) e. RR ) |
113 |
112
|
rexrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) e. RR* ) |
114 |
|
psmettri |
|- ( ( D e. ( PsMet ` X ) /\ ( p e. X /\ q e. X /\ r e. X ) ) -> ( p D q ) <_ ( ( p D r ) +e ( r D q ) ) ) |
115 |
57 60 61 82 114
|
syl13anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) <_ ( ( p D r ) +e ( r D q ) ) ) |
116 |
93
|
simp3d |
|- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( p D r ) e. ( 0 [,) ( a / 2 ) ) ) -> ( p D r ) < ( a / 2 ) ) |
117 |
77 80 91 116
|
syl21anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D r ) < ( a / 2 ) ) |
118 |
107
|
simp3d |
|- ( ( ( 0 e. RR /\ ( a / 2 ) e. RR* ) /\ ( r D q ) e. ( 0 [,) ( a / 2 ) ) ) -> ( r D q ) < ( a / 2 ) ) |
119 |
77 80 105 118
|
syl21anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( r D q ) < ( a / 2 ) ) |
120 |
95 109 78 117 119
|
lt2halvesd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) + ( r D q ) ) < a ) |
121 |
110 120
|
eqbrtrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( ( p D r ) +e ( r D q ) ) < a ) |
122 |
76 113 69 115 121
|
xrlelttrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p D q ) < a ) |
123 |
74 122
|
eqbrtrrid |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) < a ) |
124 |
67 69 71 75 123
|
elicod |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( D ` <. p , q >. ) e. ( 0 [,) a ) ) |
125 |
|
fvimacnv |
|- ( ( Fun D /\ <. p , q >. e. dom D ) -> ( ( D ` <. p , q >. ) e. ( 0 [,) a ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
126 |
125
|
biimpa |
|- ( ( ( Fun D /\ <. p , q >. e. dom D ) /\ ( D ` <. p , q >. ) e. ( 0 [,) a ) ) -> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) |
127 |
|
df-br |
|- ( p ( `' D " ( 0 [,) a ) ) q <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) |
128 |
126 127
|
sylibr |
|- ( ( ( Fun D /\ <. p , q >. e. dom D ) /\ ( D ` <. p , q >. ) e. ( 0 [,) a ) ) -> p ( `' D " ( 0 [,) a ) ) q ) |
129 |
59 65 124 128
|
syl21anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. RR+ ) /\ p e. X /\ q e. X ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) a ) ) q ) |
130 |
51 52 53 54 129
|
syl22anc |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p ( `' D " ( 0 [,) a ) ) q ) |
131 |
45
|
simprd |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> A = ( `' D " ( 0 [,) a ) ) ) |
132 |
131
|
breqd |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> ( p A q <-> p ( `' D " ( 0 [,) a ) ) q ) ) |
133 |
130 132
|
mpbird |
|- ( ( ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ r e. X ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> p A q ) |
134 |
|
simpr |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
135 |
|
df-br |
|- ( p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q <-> <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
136 |
134 135
|
sylibr |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q ) |
137 |
|
vex |
|- p e. _V |
138 |
|
vex |
|- q e. _V |
139 |
137 138
|
brco |
|- ( p ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) q <-> E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) |
140 |
136 139
|
sylib |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) |
141 |
23
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ( X X. X ) ) |
142 |
141 25
|
syl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ ran ( X X. X ) ) |
143 |
31
|
adantr |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( X X. X ) = X ) |
144 |
142 143
|
sseqtrd |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ X ) |
145 |
144
|
adantr |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> ran ( `' D " ( 0 [,) ( a / 2 ) ) ) C_ X ) |
146 |
|
vex |
|- r e. _V |
147 |
137 146
|
brelrn |
|- ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r -> r e. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
148 |
147
|
adantl |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> r e. ran ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
149 |
145 148
|
sseldd |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ p ( `' D " ( 0 [,) ( a / 2 ) ) ) r ) -> r e. X ) |
150 |
149
|
adantrr |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) -> r e. X ) |
151 |
150
|
ex |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> r e. X ) ) |
152 |
151
|
ancrd |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
153 |
152
|
eximdv |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
154 |
153
|
ad3antrrr |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
155 |
154
|
3ad2ant1 |
|- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
156 |
155
|
adantr |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> ( E. r ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) ) |
157 |
140 156
|
mpd |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) |
158 |
|
df-rex |
|- ( E. r e. X ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) <-> E. r ( r e. X /\ ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) ) |
159 |
157 158
|
sylibr |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> E. r e. X ( p ( `' D " ( 0 [,) ( a / 2 ) ) ) r /\ r ( `' D " ( 0 [,) ( a / 2 ) ) ) q ) ) |
160 |
133 159
|
r19.29a |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> p A q ) |
161 |
|
df-br |
|- ( p A q <-> <. p , q >. e. A ) |
162 |
160 161
|
sylib |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ p e. X /\ q e. X ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. A ) |
163 |
40 41 42 43 162
|
syl31anc |
|- ( ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) /\ ( p e. X /\ q e. X ) ) -> <. p , q >. e. A ) |
164 |
39 163
|
mpdan |
|- ( ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) /\ <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) -> <. p , q >. e. A ) |
165 |
164
|
ex |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. p , q >. e. ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) -> <. p , q >. e. A ) ) |
166 |
19 165
|
relssdv |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) |
167 |
|
id |
|- ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> v = ( `' D " ( 0 [,) ( a / 2 ) ) ) ) |
168 |
167 167
|
coeq12d |
|- ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> ( v o. v ) = ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) ) |
169 |
168
|
sseq1d |
|- ( v = ( `' D " ( 0 [,) ( a / 2 ) ) ) -> ( ( v o. v ) C_ A <-> ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) ) |
170 |
169
|
rspcev |
|- ( ( ( `' D " ( 0 [,) ( a / 2 ) ) ) e. F /\ ( ( `' D " ( 0 [,) ( a / 2 ) ) ) o. ( `' D " ( 0 [,) ( a / 2 ) ) ) ) C_ A ) -> E. v e. F ( v o. v ) C_ A ) |
171 |
17 166 170
|
syl2anc |
|- ( ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> E. v e. F ( v o. v ) C_ A ) |
172 |
1
|
metustel |
|- ( D e. ( PsMet ` X ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
173 |
172
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
174 |
173
|
biimpa |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
175 |
171 174
|
r19.29a |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ A e. F ) -> E. v e. F ( v o. v ) C_ A ) |