| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metust.1 |
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
| 2 |
1
|
metustel |
|- ( D e. ( PsMet ` X ) -> ( x e. F <-> E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) ) |
| 3 |
|
simpr |
|- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> x = ( `' D " ( 0 [,) a ) ) ) |
| 4 |
|
cnvimass |
|- ( `' D " ( 0 [,) a ) ) C_ dom D |
| 5 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
| 6 |
5
|
fdmd |
|- ( D e. ( PsMet ` X ) -> dom D = ( X X. X ) ) |
| 7 |
6
|
adantr |
|- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> dom D = ( X X. X ) ) |
| 8 |
4 7
|
sseqtrid |
|- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) |
| 9 |
3 8
|
eqsstrd |
|- ( ( D e. ( PsMet ` X ) /\ x = ( `' D " ( 0 [,) a ) ) ) -> x C_ ( X X. X ) ) |
| 10 |
9
|
ex |
|- ( D e. ( PsMet ` X ) -> ( x = ( `' D " ( 0 [,) a ) ) -> x C_ ( X X. X ) ) ) |
| 11 |
10
|
rexlimdvw |
|- ( D e. ( PsMet ` X ) -> ( E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) -> x C_ ( X X. X ) ) ) |
| 12 |
2 11
|
sylbid |
|- ( D e. ( PsMet ` X ) -> ( x e. F -> x C_ ( X X. X ) ) ) |
| 13 |
12
|
ralrimiv |
|- ( D e. ( PsMet ` X ) -> A. x e. F x C_ ( X X. X ) ) |
| 14 |
|
pwssb |
|- ( F C_ ~P ( X X. X ) <-> A. x e. F x C_ ( X X. X ) ) |
| 15 |
13 14
|
sylibr |
|- ( D e. ( PsMet ` X ) -> F C_ ~P ( X X. X ) ) |
| 16 |
15
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> F C_ ~P ( X X. X ) ) |
| 17 |
|
cnvexg |
|- ( D e. ( PsMet ` X ) -> `' D e. _V ) |
| 18 |
|
imaexg |
|- ( `' D e. _V -> ( `' D " ( 0 [,) 1 ) ) e. _V ) |
| 19 |
|
elisset |
|- ( ( `' D " ( 0 [,) 1 ) ) e. _V -> E. x x = ( `' D " ( 0 [,) 1 ) ) ) |
| 20 |
|
1rp |
|- 1 e. RR+ |
| 21 |
|
oveq2 |
|- ( a = 1 -> ( 0 [,) a ) = ( 0 [,) 1 ) ) |
| 22 |
21
|
imaeq2d |
|- ( a = 1 -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) 1 ) ) ) |
| 23 |
22
|
rspceeqv |
|- ( ( 1 e. RR+ /\ x = ( `' D " ( 0 [,) 1 ) ) ) -> E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 24 |
20 23
|
mpan |
|- ( x = ( `' D " ( 0 [,) 1 ) ) -> E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 25 |
24
|
eximi |
|- ( E. x x = ( `' D " ( 0 [,) 1 ) ) -> E. x E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 26 |
17 18 19 25
|
4syl |
|- ( D e. ( PsMet ` X ) -> E. x E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) |
| 27 |
2
|
exbidv |
|- ( D e. ( PsMet ` X ) -> ( E. x x e. F <-> E. x E. a e. RR+ x = ( `' D " ( 0 [,) a ) ) ) ) |
| 28 |
26 27
|
mpbird |
|- ( D e. ( PsMet ` X ) -> E. x x e. F ) |
| 29 |
28
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> E. x x e. F ) |
| 30 |
|
n0 |
|- ( F =/= (/) <-> E. x x e. F ) |
| 31 |
29 30
|
sylibr |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> F =/= (/) ) |
| 32 |
1
|
metustid |
|- ( ( D e. ( PsMet ` X ) /\ x e. F ) -> ( _I |` X ) C_ x ) |
| 33 |
32
|
adantll |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ x e. F ) -> ( _I |` X ) C_ x ) |
| 34 |
|
n0 |
|- ( X =/= (/) <-> E. p p e. X ) |
| 35 |
34
|
biimpi |
|- ( X =/= (/) -> E. p p e. X ) |
| 36 |
35
|
adantr |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> E. p p e. X ) |
| 37 |
|
opelidres |
|- ( p e. X -> ( <. p , p >. e. ( _I |` X ) <-> p e. X ) ) |
| 38 |
37
|
ibir |
|- ( p e. X -> <. p , p >. e. ( _I |` X ) ) |
| 39 |
38
|
ne0d |
|- ( p e. X -> ( _I |` X ) =/= (/) ) |
| 40 |
39
|
exlimiv |
|- ( E. p p e. X -> ( _I |` X ) =/= (/) ) |
| 41 |
36 40
|
syl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( _I |` X ) =/= (/) ) |
| 42 |
41
|
adantr |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ x e. F ) -> ( _I |` X ) =/= (/) ) |
| 43 |
|
ssn0 |
|- ( ( ( _I |` X ) C_ x /\ ( _I |` X ) =/= (/) ) -> x =/= (/) ) |
| 44 |
33 42 43
|
syl2anc |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ x e. F ) -> x =/= (/) ) |
| 45 |
44
|
nelrdva |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> -. (/) e. F ) |
| 46 |
|
df-nel |
|- ( (/) e/ F <-> -. (/) e. F ) |
| 47 |
45 46
|
sylibr |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> (/) e/ F ) |
| 48 |
|
dfss2 |
|- ( x C_ y <-> ( x i^i y ) = x ) |
| 49 |
48
|
biimpi |
|- ( x C_ y -> ( x i^i y ) = x ) |
| 50 |
49
|
adantl |
|- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ x C_ y ) -> ( x i^i y ) = x ) |
| 51 |
|
simplrl |
|- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ x C_ y ) -> x e. F ) |
| 52 |
50 51
|
eqeltrd |
|- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ x C_ y ) -> ( x i^i y ) e. F ) |
| 53 |
|
sseqin2 |
|- ( y C_ x <-> ( x i^i y ) = y ) |
| 54 |
53
|
biimpi |
|- ( y C_ x -> ( x i^i y ) = y ) |
| 55 |
54
|
adantl |
|- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ y C_ x ) -> ( x i^i y ) = y ) |
| 56 |
|
simplrr |
|- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ y C_ x ) -> y e. F ) |
| 57 |
55 56
|
eqeltrd |
|- ( ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) /\ y C_ x ) -> ( x i^i y ) e. F ) |
| 58 |
|
simplr |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> D e. ( PsMet ` X ) ) |
| 59 |
|
simprl |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> x e. F ) |
| 60 |
|
simprr |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> y e. F ) |
| 61 |
1
|
metustto |
|- ( ( D e. ( PsMet ` X ) /\ x e. F /\ y e. F ) -> ( x C_ y \/ y C_ x ) ) |
| 62 |
58 59 60 61
|
syl3anc |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> ( x C_ y \/ y C_ x ) ) |
| 63 |
52 57 62
|
mpjaodan |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> ( x i^i y ) e. F ) |
| 64 |
|
ssidd |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> ( x i^i y ) C_ ( x i^i y ) ) |
| 65 |
|
sseq1 |
|- ( z = ( x i^i y ) -> ( z C_ ( x i^i y ) <-> ( x i^i y ) C_ ( x i^i y ) ) ) |
| 66 |
65
|
rspcev |
|- ( ( ( x i^i y ) e. F /\ ( x i^i y ) C_ ( x i^i y ) ) -> E. z e. F z C_ ( x i^i y ) ) |
| 67 |
63 64 66
|
syl2anc |
|- ( ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) /\ ( x e. F /\ y e. F ) ) -> E. z e. F z C_ ( x i^i y ) ) |
| 68 |
67
|
ralrimivva |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) |
| 69 |
31 47 68
|
3jca |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) ) |
| 70 |
|
elfvex |
|- ( D e. ( PsMet ` X ) -> X e. _V ) |
| 71 |
70
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> X e. _V ) |
| 72 |
71 71
|
xpexd |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( X X. X ) e. _V ) |
| 73 |
|
isfbas2 |
|- ( ( X X. X ) e. _V -> ( F e. ( fBas ` ( X X. X ) ) <-> ( F C_ ~P ( X X. X ) /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) ) ) ) |
| 74 |
72 73
|
syl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( F e. ( fBas ` ( X X. X ) ) <-> ( F C_ ~P ( X X. X ) /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F E. z e. F z C_ ( x i^i y ) ) ) ) ) |
| 75 |
16 69 74
|
mpbir2and |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> F e. ( fBas ` ( X X. X ) ) ) |