Metamath Proof Explorer


Theorem metustrel

Description: Elements of the filter base generated by the metric D are relations. (Contributed by Thierry Arnoux, 28-Nov-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis metust.1
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) )
Assertion metustrel
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> Rel A )

Proof

Step Hyp Ref Expression
1 metust.1
 |-  F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) )
2 1 metustss
 |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( X X. X ) )
3 xpss
 |-  ( X X. X ) C_ ( _V X. _V )
4 2 3 sstrdi
 |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( _V X. _V ) )
5 df-rel
 |-  ( Rel A <-> A C_ ( _V X. _V ) )
6 4 5 sylibr
 |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> Rel A )