| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metust.1 |  |-  F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) | 
						
							| 2 |  | cnvimass |  |-  ( `' D " ( 0 [,) a ) ) C_ dom D | 
						
							| 3 |  | psmetf |  |-  ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) | 
						
							| 4 | 2 3 | fssdm |  |-  ( D e. ( PsMet ` X ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) | 
						
							| 6 |  | cnvexg |  |-  ( D e. ( PsMet ` X ) -> `' D e. _V ) | 
						
							| 7 |  | imaexg |  |-  ( `' D e. _V -> ( `' D " ( 0 [,) a ) ) e. _V ) | 
						
							| 8 |  | elpwg |  |-  ( ( `' D " ( 0 [,) a ) ) e. _V -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( D e. ( PsMet ` X ) -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) <-> ( `' D " ( 0 [,) a ) ) C_ ( X X. X ) ) ) | 
						
							| 11 | 5 10 | mpbird |  |-  ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ a e. RR+ ) -> ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) ) | 
						
							| 12 | 11 | ralrimiva |  |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A. a e. RR+ ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) ) | 
						
							| 13 |  | eqid |  |-  ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) | 
						
							| 14 | 13 | rnmptss |  |-  ( A. a e. RR+ ( `' D " ( 0 [,) a ) ) e. ~P ( X X. X ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) C_ ~P ( X X. X ) ) | 
						
							| 15 | 12 14 | syl |  |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) C_ ~P ( X X. X ) ) | 
						
							| 16 | 1 15 | eqsstrid |  |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> F C_ ~P ( X X. X ) ) | 
						
							| 17 |  | simpr |  |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A e. F ) | 
						
							| 18 | 16 17 | sseldd |  |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A e. ~P ( X X. X ) ) | 
						
							| 19 | 18 | elpwid |  |-  ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( X X. X ) ) |