Step |
Hyp |
Ref |
Expression |
1 |
|
metust.1 |
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
2 |
1
|
metustss |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> A C_ ( X X. X ) ) |
3 |
|
cnvss |
|- ( A C_ ( X X. X ) -> `' A C_ `' ( X X. X ) ) |
4 |
|
cnvxp |
|- `' ( X X. X ) = ( X X. X ) |
5 |
3 4
|
sseqtrdi |
|- ( A C_ ( X X. X ) -> `' A C_ ( X X. X ) ) |
6 |
2 5
|
syl |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> `' A C_ ( X X. X ) ) |
7 |
|
simp-4l |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> D e. ( PsMet ` X ) ) |
8 |
|
simpr1r |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( ( p e. X /\ q e. X ) /\ a e. RR+ /\ A = ( `' D " ( 0 [,) a ) ) ) ) -> q e. X ) |
9 |
8
|
3anassrs |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> q e. X ) |
10 |
|
simpr1l |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( ( p e. X /\ q e. X ) /\ a e. RR+ /\ A = ( `' D " ( 0 [,) a ) ) ) ) -> p e. X ) |
11 |
10
|
3anassrs |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> p e. X ) |
12 |
|
psmetsym |
|- ( ( D e. ( PsMet ` X ) /\ q e. X /\ p e. X ) -> ( q D p ) = ( p D q ) ) |
13 |
7 9 11 12
|
syl3anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( q D p ) = ( p D q ) ) |
14 |
|
df-ov |
|- ( q D p ) = ( D ` <. q , p >. ) |
15 |
|
df-ov |
|- ( p D q ) = ( D ` <. p , q >. ) |
16 |
13 14 15
|
3eqtr3g |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( D ` <. q , p >. ) = ( D ` <. p , q >. ) ) |
17 |
16
|
eleq1d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( D ` <. q , p >. ) e. ( 0 [,) a ) <-> ( D ` <. p , q >. ) e. ( 0 [,) a ) ) ) |
18 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
19 |
|
ffun |
|- ( D : ( X X. X ) --> RR* -> Fun D ) |
20 |
7 18 19
|
3syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> Fun D ) |
21 |
|
simpllr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( p e. X /\ q e. X ) ) |
22 |
21
|
ancomd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( q e. X /\ p e. X ) ) |
23 |
|
opelxpi |
|- ( ( q e. X /\ p e. X ) -> <. q , p >. e. ( X X. X ) ) |
24 |
22 23
|
syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. q , p >. e. ( X X. X ) ) |
25 |
|
fdm |
|- ( D : ( X X. X ) --> RR* -> dom D = ( X X. X ) ) |
26 |
7 18 25
|
3syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> dom D = ( X X. X ) ) |
27 |
24 26
|
eleqtrrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. q , p >. e. dom D ) |
28 |
|
fvimacnv |
|- ( ( Fun D /\ <. q , p >. e. dom D ) -> ( ( D ` <. q , p >. ) e. ( 0 [,) a ) <-> <. q , p >. e. ( `' D " ( 0 [,) a ) ) ) ) |
29 |
20 27 28
|
syl2anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( D ` <. q , p >. ) e. ( 0 [,) a ) <-> <. q , p >. e. ( `' D " ( 0 [,) a ) ) ) ) |
30 |
|
opelxpi |
|- ( ( p e. X /\ q e. X ) -> <. p , q >. e. ( X X. X ) ) |
31 |
21 30
|
syl |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. p , q >. e. ( X X. X ) ) |
32 |
31 26
|
eleqtrrd |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> <. p , q >. e. dom D ) |
33 |
|
fvimacnv |
|- ( ( Fun D /\ <. p , q >. e. dom D ) -> ( ( D ` <. p , q >. ) e. ( 0 [,) a ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
34 |
20 32 33
|
syl2anc |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( ( D ` <. p , q >. ) e. ( 0 [,) a ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
35 |
17 29 34
|
3bitr3d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. q , p >. e. ( `' D " ( 0 [,) a ) ) <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
36 |
|
simpr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> A = ( `' D " ( 0 [,) a ) ) ) |
37 |
36
|
eleq2d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. q , p >. e. A <-> <. q , p >. e. ( `' D " ( 0 [,) a ) ) ) ) |
38 |
36
|
eleq2d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. p , q >. e. A <-> <. p , q >. e. ( `' D " ( 0 [,) a ) ) ) ) |
39 |
35 37 38
|
3bitr4d |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) /\ a e. RR+ ) /\ A = ( `' D " ( 0 [,) a ) ) ) -> ( <. q , p >. e. A <-> <. p , q >. e. A ) ) |
40 |
|
eqid |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
41 |
40
|
elrnmpt |
|- ( A e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) -> ( A e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
42 |
41
|
ibi |
|- ( A e. ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
43 |
42 1
|
eleq2s |
|- ( A e. F -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
44 |
43
|
ad2antlr |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
45 |
39 44
|
r19.29a |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) -> ( <. q , p >. e. A <-> <. p , q >. e. A ) ) |
46 |
|
df-br |
|- ( p `' A q <-> <. p , q >. e. `' A ) |
47 |
|
vex |
|- p e. _V |
48 |
|
vex |
|- q e. _V |
49 |
47 48
|
opelcnv |
|- ( <. p , q >. e. `' A <-> <. q , p >. e. A ) |
50 |
46 49
|
bitri |
|- ( p `' A q <-> <. q , p >. e. A ) |
51 |
|
df-br |
|- ( p A q <-> <. p , q >. e. A ) |
52 |
45 50 51
|
3bitr4g |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ ( p e. X /\ q e. X ) ) -> ( p `' A q <-> p A q ) ) |
53 |
52
|
3impb |
|- ( ( ( D e. ( PsMet ` X ) /\ A e. F ) /\ p e. X /\ q e. X ) -> ( p `' A q <-> p A q ) ) |
54 |
6 2 53
|
eqbrrdva |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> `' A = A ) |