Step |
Hyp |
Ref |
Expression |
1 |
|
metust.1 |
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
2 |
|
simpll |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> a e. RR+ ) |
3 |
2
|
rpred |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> a e. RR ) |
4 |
|
simplr |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> b e. RR+ ) |
5 |
4
|
rpred |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> b e. RR ) |
6 |
|
simpllr |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> b e. RR+ ) |
7 |
6
|
rpred |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> b e. RR ) |
8 |
|
0xr |
|- 0 e. RR* |
9 |
8
|
a1i |
|- ( ( b e. RR /\ a <_ b ) -> 0 e. RR* ) |
10 |
|
simpl |
|- ( ( b e. RR /\ a <_ b ) -> b e. RR ) |
11 |
10
|
rexrd |
|- ( ( b e. RR /\ a <_ b ) -> b e. RR* ) |
12 |
|
0le0 |
|- 0 <_ 0 |
13 |
12
|
a1i |
|- ( ( b e. RR /\ a <_ b ) -> 0 <_ 0 ) |
14 |
|
simpr |
|- ( ( b e. RR /\ a <_ b ) -> a <_ b ) |
15 |
|
icossico |
|- ( ( ( 0 e. RR* /\ b e. RR* ) /\ ( 0 <_ 0 /\ a <_ b ) ) -> ( 0 [,) a ) C_ ( 0 [,) b ) ) |
16 |
9 11 13 14 15
|
syl22anc |
|- ( ( b e. RR /\ a <_ b ) -> ( 0 [,) a ) C_ ( 0 [,) b ) ) |
17 |
|
imass2 |
|- ( ( 0 [,) a ) C_ ( 0 [,) b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
18 |
16 17
|
syl |
|- ( ( b e. RR /\ a <_ b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
19 |
7 18
|
sylancom |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
20 |
|
simplrl |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> A = ( `' D " ( 0 [,) a ) ) ) |
21 |
|
simplrr |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> B = ( `' D " ( 0 [,) b ) ) ) |
22 |
19 20 21
|
3sstr4d |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> A C_ B ) |
23 |
22
|
orcd |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> ( A C_ B \/ B C_ A ) ) |
24 |
|
simplll |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> a e. RR+ ) |
25 |
24
|
rpred |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> a e. RR ) |
26 |
8
|
a1i |
|- ( ( a e. RR /\ b <_ a ) -> 0 e. RR* ) |
27 |
|
simpl |
|- ( ( a e. RR /\ b <_ a ) -> a e. RR ) |
28 |
27
|
rexrd |
|- ( ( a e. RR /\ b <_ a ) -> a e. RR* ) |
29 |
12
|
a1i |
|- ( ( a e. RR /\ b <_ a ) -> 0 <_ 0 ) |
30 |
|
simpr |
|- ( ( a e. RR /\ b <_ a ) -> b <_ a ) |
31 |
|
icossico |
|- ( ( ( 0 e. RR* /\ a e. RR* ) /\ ( 0 <_ 0 /\ b <_ a ) ) -> ( 0 [,) b ) C_ ( 0 [,) a ) ) |
32 |
26 28 29 30 31
|
syl22anc |
|- ( ( a e. RR /\ b <_ a ) -> ( 0 [,) b ) C_ ( 0 [,) a ) ) |
33 |
|
imass2 |
|- ( ( 0 [,) b ) C_ ( 0 [,) a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
34 |
32 33
|
syl |
|- ( ( a e. RR /\ b <_ a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
35 |
25 34
|
sylancom |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
36 |
|
simplrr |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> B = ( `' D " ( 0 [,) b ) ) ) |
37 |
|
simplrl |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> A = ( `' D " ( 0 [,) a ) ) ) |
38 |
35 36 37
|
3sstr4d |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> B C_ A ) |
39 |
38
|
olcd |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> ( A C_ B \/ B C_ A ) ) |
40 |
3 5 23 39
|
lecasei |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> ( A C_ B \/ B C_ A ) ) |
41 |
40
|
adantlll |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) /\ a e. RR+ ) /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> ( A C_ B \/ B C_ A ) ) |
42 |
1
|
metustel |
|- ( D e. ( PsMet ` X ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
43 |
42
|
biimpa |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
44 |
43
|
3adant3 |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
45 |
|
oveq2 |
|- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
46 |
45
|
imaeq2d |
|- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
47 |
46
|
cbvmptv |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
48 |
47
|
rneqi |
|- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
49 |
1 48
|
eqtri |
|- F = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
50 |
49
|
metustel |
|- ( D e. ( PsMet ` X ) -> ( B e. F <-> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) ) |
51 |
50
|
biimpa |
|- ( ( D e. ( PsMet ` X ) /\ B e. F ) -> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) |
52 |
51
|
3adant2 |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) |
53 |
|
reeanv |
|- ( E. a e. RR+ E. b e. RR+ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) <-> ( E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) /\ E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) ) |
54 |
44 52 53
|
sylanbrc |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. a e. RR+ E. b e. RR+ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) |
55 |
41 54
|
r19.29vva |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> ( A C_ B \/ B C_ A ) ) |