| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metust.1 |
|- F = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) |
| 2 |
|
simpll |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> a e. RR+ ) |
| 3 |
2
|
rpred |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> a e. RR ) |
| 4 |
|
simplr |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> b e. RR+ ) |
| 5 |
4
|
rpred |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> b e. RR ) |
| 6 |
|
simpllr |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> b e. RR+ ) |
| 7 |
6
|
rpred |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> b e. RR ) |
| 8 |
|
0xr |
|- 0 e. RR* |
| 9 |
8
|
a1i |
|- ( ( b e. RR /\ a <_ b ) -> 0 e. RR* ) |
| 10 |
|
simpl |
|- ( ( b e. RR /\ a <_ b ) -> b e. RR ) |
| 11 |
10
|
rexrd |
|- ( ( b e. RR /\ a <_ b ) -> b e. RR* ) |
| 12 |
|
0le0 |
|- 0 <_ 0 |
| 13 |
12
|
a1i |
|- ( ( b e. RR /\ a <_ b ) -> 0 <_ 0 ) |
| 14 |
|
simpr |
|- ( ( b e. RR /\ a <_ b ) -> a <_ b ) |
| 15 |
|
icossico |
|- ( ( ( 0 e. RR* /\ b e. RR* ) /\ ( 0 <_ 0 /\ a <_ b ) ) -> ( 0 [,) a ) C_ ( 0 [,) b ) ) |
| 16 |
9 11 13 14 15
|
syl22anc |
|- ( ( b e. RR /\ a <_ b ) -> ( 0 [,) a ) C_ ( 0 [,) b ) ) |
| 17 |
|
imass2 |
|- ( ( 0 [,) a ) C_ ( 0 [,) b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
| 18 |
16 17
|
syl |
|- ( ( b e. RR /\ a <_ b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
| 19 |
7 18
|
sylancom |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> ( `' D " ( 0 [,) a ) ) C_ ( `' D " ( 0 [,) b ) ) ) |
| 20 |
|
simplrl |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> A = ( `' D " ( 0 [,) a ) ) ) |
| 21 |
|
simplrr |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> B = ( `' D " ( 0 [,) b ) ) ) |
| 22 |
19 20 21
|
3sstr4d |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> A C_ B ) |
| 23 |
22
|
orcd |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ a <_ b ) -> ( A C_ B \/ B C_ A ) ) |
| 24 |
|
simplll |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> a e. RR+ ) |
| 25 |
24
|
rpred |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> a e. RR ) |
| 26 |
8
|
a1i |
|- ( ( a e. RR /\ b <_ a ) -> 0 e. RR* ) |
| 27 |
|
simpl |
|- ( ( a e. RR /\ b <_ a ) -> a e. RR ) |
| 28 |
27
|
rexrd |
|- ( ( a e. RR /\ b <_ a ) -> a e. RR* ) |
| 29 |
12
|
a1i |
|- ( ( a e. RR /\ b <_ a ) -> 0 <_ 0 ) |
| 30 |
|
simpr |
|- ( ( a e. RR /\ b <_ a ) -> b <_ a ) |
| 31 |
|
icossico |
|- ( ( ( 0 e. RR* /\ a e. RR* ) /\ ( 0 <_ 0 /\ b <_ a ) ) -> ( 0 [,) b ) C_ ( 0 [,) a ) ) |
| 32 |
26 28 29 30 31
|
syl22anc |
|- ( ( a e. RR /\ b <_ a ) -> ( 0 [,) b ) C_ ( 0 [,) a ) ) |
| 33 |
|
imass2 |
|- ( ( 0 [,) b ) C_ ( 0 [,) a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
| 34 |
32 33
|
syl |
|- ( ( a e. RR /\ b <_ a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
| 35 |
25 34
|
sylancom |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> ( `' D " ( 0 [,) b ) ) C_ ( `' D " ( 0 [,) a ) ) ) |
| 36 |
|
simplrr |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> B = ( `' D " ( 0 [,) b ) ) ) |
| 37 |
|
simplrl |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> A = ( `' D " ( 0 [,) a ) ) ) |
| 38 |
35 36 37
|
3sstr4d |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> B C_ A ) |
| 39 |
38
|
olcd |
|- ( ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) /\ b <_ a ) -> ( A C_ B \/ B C_ A ) ) |
| 40 |
3 5 23 39
|
lecasei |
|- ( ( ( a e. RR+ /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> ( A C_ B \/ B C_ A ) ) |
| 41 |
40
|
adantlll |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) /\ a e. RR+ ) /\ b e. RR+ ) /\ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) -> ( A C_ B \/ B C_ A ) ) |
| 42 |
1
|
metustel |
|- ( D e. ( PsMet ` X ) -> ( A e. F <-> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) ) |
| 43 |
42
|
biimpa |
|- ( ( D e. ( PsMet ` X ) /\ A e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 44 |
43
|
3adant3 |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) ) |
| 45 |
|
oveq2 |
|- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
| 46 |
45
|
imaeq2d |
|- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
| 47 |
46
|
cbvmptv |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 48 |
47
|
rneqi |
|- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 49 |
1 48
|
eqtri |
|- F = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
| 50 |
49
|
metustel |
|- ( D e. ( PsMet ` X ) -> ( B e. F <-> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) ) |
| 51 |
50
|
biimpa |
|- ( ( D e. ( PsMet ` X ) /\ B e. F ) -> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) |
| 52 |
51
|
3adant2 |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) |
| 53 |
|
reeanv |
|- ( E. a e. RR+ E. b e. RR+ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) <-> ( E. a e. RR+ A = ( `' D " ( 0 [,) a ) ) /\ E. b e. RR+ B = ( `' D " ( 0 [,) b ) ) ) ) |
| 54 |
44 52 53
|
sylanbrc |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> E. a e. RR+ E. b e. RR+ ( A = ( `' D " ( 0 [,) a ) ) /\ B = ( `' D " ( 0 [,) b ) ) ) ) |
| 55 |
41 54
|
r19.29vva |
|- ( ( D e. ( PsMet ` X ) /\ A e. F /\ B e. F ) -> ( A C_ B \/ B C_ A ) ) |