Step |
Hyp |
Ref |
Expression |
1 |
|
metuval |
|- ( D e. ( PsMet ` X ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
2 |
1
|
adantl |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
3 |
|
oveq2 |
|- ( a = b -> ( 0 [,) a ) = ( 0 [,) b ) ) |
4 |
3
|
imaeq2d |
|- ( a = b -> ( `' D " ( 0 [,) a ) ) = ( `' D " ( 0 [,) b ) ) ) |
5 |
4
|
cbvmptv |
|- ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
6 |
5
|
rneqi |
|- ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) = ran ( b e. RR+ |-> ( `' D " ( 0 [,) b ) ) ) |
7 |
6
|
metust |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) e. ( UnifOn ` X ) ) |
8 |
2 7
|
eqeltrd |
|- ( ( X =/= (/) /\ D e. ( PsMet ` X ) ) -> ( metUnif ` D ) e. ( UnifOn ` X ) ) |