Step |
Hyp |
Ref |
Expression |
1 |
|
df-metu |
|- metUnif = ( d e. U. ran PsMet |-> ( ( dom dom d X. dom dom d ) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) ) |
2 |
|
simpr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> d = D ) |
3 |
2
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom d = dom D ) |
4 |
3
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = dom dom D ) |
5 |
|
psmetdmdm |
|- ( D e. ( PsMet ` X ) -> X = dom dom D ) |
6 |
5
|
adantr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> X = dom dom D ) |
7 |
4 6
|
eqtr4d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = X ) |
8 |
7
|
sqxpeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( dom dom d X. dom dom d ) = ( X X. X ) ) |
9 |
|
simplr |
|- ( ( ( D e. ( PsMet ` X ) /\ d = D ) /\ a e. RR+ ) -> d = D ) |
10 |
9
|
cnveqd |
|- ( ( ( D e. ( PsMet ` X ) /\ d = D ) /\ a e. RR+ ) -> `' d = `' D ) |
11 |
10
|
imaeq1d |
|- ( ( ( D e. ( PsMet ` X ) /\ d = D ) /\ a e. RR+ ) -> ( `' d " ( 0 [,) a ) ) = ( `' D " ( 0 [,) a ) ) ) |
12 |
11
|
mpteq2dva |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) |
13 |
12
|
rneqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) |
14 |
8 13
|
oveq12d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( dom dom d X. dom dom d ) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
15 |
|
elfvdm |
|- ( D e. ( PsMet ` X ) -> X e. dom PsMet ) |
16 |
|
fveq2 |
|- ( x = X -> ( PsMet ` x ) = ( PsMet ` X ) ) |
17 |
16
|
eleq2d |
|- ( x = X -> ( D e. ( PsMet ` x ) <-> D e. ( PsMet ` X ) ) ) |
18 |
17
|
rspcev |
|- ( ( X e. dom PsMet /\ D e. ( PsMet ` X ) ) -> E. x e. dom PsMet D e. ( PsMet ` x ) ) |
19 |
15 18
|
mpancom |
|- ( D e. ( PsMet ` X ) -> E. x e. dom PsMet D e. ( PsMet ` x ) ) |
20 |
|
df-psmet |
|- PsMet = ( y e. _V |-> { u e. ( RR* ^m ( y X. y ) ) | A. z e. y ( ( z u z ) = 0 /\ A. w e. y A. v e. y ( z u w ) <_ ( ( v u z ) +e ( v u w ) ) ) } ) |
21 |
20
|
funmpt2 |
|- Fun PsMet |
22 |
|
elunirn |
|- ( Fun PsMet -> ( D e. U. ran PsMet <-> E. x e. dom PsMet D e. ( PsMet ` x ) ) ) |
23 |
21 22
|
ax-mp |
|- ( D e. U. ran PsMet <-> E. x e. dom PsMet D e. ( PsMet ` x ) ) |
24 |
19 23
|
sylibr |
|- ( D e. ( PsMet ` X ) -> D e. U. ran PsMet ) |
25 |
|
ovexd |
|- ( D e. ( PsMet ` X ) -> ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) e. _V ) |
26 |
1 14 24 25
|
fvmptd2 |
|- ( D e. ( PsMet ` X ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |