Step |
Hyp |
Ref |
Expression |
1 |
|
df-metu |
|- metUnif = ( d e. U. ran PsMet |-> ( ( dom dom d X. dom dom d ) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) ) |
2 |
|
simpr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> d = D ) |
3 |
2
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom d = dom D ) |
4 |
3
|
dmeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = dom dom D ) |
5 |
|
psmetdmdm |
|- ( D e. ( PsMet ` X ) -> X = dom dom D ) |
6 |
5
|
adantr |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> X = dom dom D ) |
7 |
4 6
|
eqtr4d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = X ) |
8 |
7
|
sqxpeqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( dom dom d X. dom dom d ) = ( X X. X ) ) |
9 |
|
simplr |
|- ( ( ( D e. ( PsMet ` X ) /\ d = D ) /\ a e. RR+ ) -> d = D ) |
10 |
9
|
cnveqd |
|- ( ( ( D e. ( PsMet ` X ) /\ d = D ) /\ a e. RR+ ) -> `' d = `' D ) |
11 |
10
|
imaeq1d |
|- ( ( ( D e. ( PsMet ` X ) /\ d = D ) /\ a e. RR+ ) -> ( `' d " ( 0 [,) a ) ) = ( `' D " ( 0 [,) a ) ) ) |
12 |
11
|
mpteq2dva |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) = ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) |
13 |
12
|
rneqd |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) = ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) |
14 |
8 13
|
oveq12d |
|- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( dom dom d X. dom dom d ) filGen ran ( a e. RR+ |-> ( `' d " ( 0 [,) a ) ) ) ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |
15 |
|
elfvunirn |
|- ( D e. ( PsMet ` X ) -> D e. U. ran PsMet ) |
16 |
|
ovexd |
|- ( D e. ( PsMet ` X ) -> ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) e. _V ) |
17 |
1 14 15 16
|
fvmptd2 |
|- ( D e. ( PsMet ` X ) -> ( metUnif ` D ) = ( ( X X. X ) filGen ran ( a e. RR+ |-> ( `' D " ( 0 [,) a ) ) ) ) ) |