| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prex |  |-  { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. _V | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 |  | eqid |  |-  { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } = { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } | 
						
							| 4 | 3 | grpbase |  |-  ( (/) e. _V -> (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ) | 
						
							| 5 | 4 | eqcomd |  |-  ( (/) e. _V -> ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = (/) ) | 
						
							| 6 | 2 5 | ax-mp |  |-  ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = (/) | 
						
							| 7 |  | mgm0 |  |-  ( ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. _V /\ ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = (/) ) -> { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm ) | 
						
							| 8 | 1 6 7 | mp2an |  |-  { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm |