Step |
Hyp |
Ref |
Expression |
1 |
|
prex |
|- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. _V |
2 |
|
0ex |
|- (/) e. _V |
3 |
|
eqid |
|- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } = { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } |
4 |
3
|
grpbase |
|- ( (/) e. _V -> (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ) |
5 |
4
|
eqcomd |
|- ( (/) e. _V -> ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = (/) ) |
6 |
2 5
|
ax-mp |
|- ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = (/) |
7 |
|
mgm0 |
|- ( ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. _V /\ ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = (/) ) -> { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm ) |
8 |
1 6 7
|
mp2an |
|- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm |