| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgmb1mgm1.b |  |-  B = ( Base ` M ) | 
						
							| 2 |  | mgmb1mgm1.p |  |-  .+ = ( +g ` M ) | 
						
							| 3 |  | eqid |  |-  ( +f ` M ) = ( +f ` M ) | 
						
							| 4 | 1 2 3 | plusfeq |  |-  ( .+ Fn ( B X. B ) -> ( +f ` M ) = .+ ) | 
						
							| 5 | 1 3 | mgmplusf |  |-  ( M e. Mgm -> ( +f ` M ) : ( B X. B ) --> B ) | 
						
							| 6 |  | feq1 |  |-  ( ( +f ` M ) = .+ -> ( ( +f ` M ) : ( B X. B ) --> B <-> .+ : ( B X. B ) --> B ) ) | 
						
							| 7 | 5 6 | imbitrid |  |-  ( ( +f ` M ) = .+ -> ( M e. Mgm -> .+ : ( B X. B ) --> B ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( .+ Fn ( B X. B ) -> ( M e. Mgm -> .+ : ( B X. B ) --> B ) ) | 
						
							| 9 | 8 | impcom |  |-  ( ( M e. Mgm /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) --> B ) | 
						
							| 10 | 9 | 3adant2 |  |-  ( ( M e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> .+ : ( B X. B ) --> B ) | 
						
							| 11 |  | simp2 |  |-  ( ( M e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> Z e. B ) | 
						
							| 12 |  | intopsn |  |-  ( ( .+ : ( B X. B ) --> B /\ Z e. B ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) | 
						
							| 13 | 10 11 12 | syl2anc |  |-  ( ( M e. Mgm /\ Z e. B /\ .+ Fn ( B X. B ) ) -> ( B = { Z } <-> .+ = { <. <. Z , Z >. , Z >. } ) ) |