Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgmid.b | |- B = ( Base ` G ) |
|
| ismgmid.o | |- .0. = ( 0g ` G ) |
||
| ismgmid.p | |- .+ = ( +g ` G ) |
||
| mgmidcl.e | |- ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
||
| Assertion | mgmidcl | |- ( ph -> .0. e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmid.b | |- B = ( Base ` G ) |
|
| 2 | ismgmid.o | |- .0. = ( 0g ` G ) |
|
| 3 | ismgmid.p | |- .+ = ( +g ` G ) |
|
| 4 | mgmidcl.e | |- ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) ) |
|
| 5 | eqid | |- .0. = .0. |
|
| 6 | 1 2 3 4 | ismgmid | |- ( ph -> ( ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) <-> .0. = .0. ) ) |
| 7 | 5 6 | mpbiri | |- ( ph -> ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) |
| 8 | 7 | simpld | |- ( ph -> .0. e. B ) |