Metamath Proof Explorer


Theorem mgmidcl

Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ismgmid.b
|- B = ( Base ` G )
ismgmid.o
|- .0. = ( 0g ` G )
ismgmid.p
|- .+ = ( +g ` G )
mgmidcl.e
|- ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) )
Assertion mgmidcl
|- ( ph -> .0. e. B )

Proof

Step Hyp Ref Expression
1 ismgmid.b
 |-  B = ( Base ` G )
2 ismgmid.o
 |-  .0. = ( 0g ` G )
3 ismgmid.p
 |-  .+ = ( +g ` G )
4 mgmidcl.e
 |-  ( ph -> E. e e. B A. x e. B ( ( e .+ x ) = x /\ ( x .+ e ) = x ) )
5 eqid
 |-  .0. = .0.
6 1 2 3 4 ismgmid
 |-  ( ph -> ( ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) <-> .0. = .0. ) )
7 5 6 mpbiri
 |-  ( ph -> ( .0. e. B /\ A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) )
8 7 simpld
 |-  ( ph -> .0. e. B )