| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( ( u .+ x ) = x /\ ( x .+ u ) = x ) -> ( u .+ x ) = x ) |
| 2 |
1
|
ralimi |
|- ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) -> A. x e. B ( u .+ x ) = x ) |
| 3 |
|
simpr |
|- ( ( ( w .+ x ) = x /\ ( x .+ w ) = x ) -> ( x .+ w ) = x ) |
| 4 |
3
|
ralimi |
|- ( A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) -> A. x e. B ( x .+ w ) = x ) |
| 5 |
|
oveq1 |
|- ( x = u -> ( x .+ w ) = ( u .+ w ) ) |
| 6 |
|
id |
|- ( x = u -> x = u ) |
| 7 |
5 6
|
eqeq12d |
|- ( x = u -> ( ( x .+ w ) = x <-> ( u .+ w ) = u ) ) |
| 8 |
7
|
rspcva |
|- ( ( u e. B /\ A. x e. B ( x .+ w ) = x ) -> ( u .+ w ) = u ) |
| 9 |
|
oveq2 |
|- ( x = w -> ( u .+ x ) = ( u .+ w ) ) |
| 10 |
|
id |
|- ( x = w -> x = w ) |
| 11 |
9 10
|
eqeq12d |
|- ( x = w -> ( ( u .+ x ) = x <-> ( u .+ w ) = w ) ) |
| 12 |
11
|
rspcva |
|- ( ( w e. B /\ A. x e. B ( u .+ x ) = x ) -> ( u .+ w ) = w ) |
| 13 |
8 12
|
sylan9req |
|- ( ( ( u e. B /\ A. x e. B ( x .+ w ) = x ) /\ ( w e. B /\ A. x e. B ( u .+ x ) = x ) ) -> u = w ) |
| 14 |
13
|
an42s |
|- ( ( ( u e. B /\ w e. B ) /\ ( A. x e. B ( u .+ x ) = x /\ A. x e. B ( x .+ w ) = x ) ) -> u = w ) |
| 15 |
14
|
ex |
|- ( ( u e. B /\ w e. B ) -> ( ( A. x e. B ( u .+ x ) = x /\ A. x e. B ( x .+ w ) = x ) -> u = w ) ) |
| 16 |
2 4 15
|
syl2ani |
|- ( ( u e. B /\ w e. B ) -> ( ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) -> u = w ) ) |
| 17 |
16
|
rgen2 |
|- A. u e. B A. w e. B ( ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) -> u = w ) |
| 18 |
|
oveq1 |
|- ( u = w -> ( u .+ x ) = ( w .+ x ) ) |
| 19 |
18
|
eqeq1d |
|- ( u = w -> ( ( u .+ x ) = x <-> ( w .+ x ) = x ) ) |
| 20 |
19
|
ovanraleqv |
|- ( u = w -> ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) <-> A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) ) |
| 21 |
20
|
rmo4 |
|- ( E* u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) <-> A. u e. B A. w e. B ( ( A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) /\ A. x e. B ( ( w .+ x ) = x /\ ( x .+ w ) = x ) ) -> u = w ) ) |
| 22 |
17 21
|
mpbir |
|- E* u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) |