| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnmgp |
|- mulGrp Fn _V |
| 2 |
|
ssv |
|- Ring C_ _V |
| 3 |
|
fnssres |
|- ( ( mulGrp Fn _V /\ Ring C_ _V ) -> ( mulGrp |` Ring ) Fn Ring ) |
| 4 |
1 2 3
|
mp2an |
|- ( mulGrp |` Ring ) Fn Ring |
| 5 |
|
fvres |
|- ( a e. Ring -> ( ( mulGrp |` Ring ) ` a ) = ( mulGrp ` a ) ) |
| 6 |
|
eqid |
|- ( mulGrp ` a ) = ( mulGrp ` a ) |
| 7 |
6
|
ringmgp |
|- ( a e. Ring -> ( mulGrp ` a ) e. Mnd ) |
| 8 |
5 7
|
eqeltrd |
|- ( a e. Ring -> ( ( mulGrp |` Ring ) ` a ) e. Mnd ) |
| 9 |
8
|
rgen |
|- A. a e. Ring ( ( mulGrp |` Ring ) ` a ) e. Mnd |
| 10 |
|
ffnfv |
|- ( ( mulGrp |` Ring ) : Ring --> Mnd <-> ( ( mulGrp |` Ring ) Fn Ring /\ A. a e. Ring ( ( mulGrp |` Ring ) ` a ) e. Mnd ) ) |
| 11 |
4 9 10
|
mpbir2an |
|- ( mulGrp |` Ring ) : Ring --> Mnd |