Step |
Hyp |
Ref |
Expression |
1 |
|
mgpbas.1 |
|- M = ( mulGrp ` R ) |
2 |
|
mgplem.2 |
|- E = Slot N |
3 |
|
mgplem.3 |
|- N e. NN |
4 |
|
mgplem.4 |
|- N =/= 2 |
5 |
2 3
|
ndxid |
|- E = Slot ( E ` ndx ) |
6 |
2 3
|
ndxarg |
|- ( E ` ndx ) = N |
7 |
|
plusgndx |
|- ( +g ` ndx ) = 2 |
8 |
6 7
|
neeq12i |
|- ( ( E ` ndx ) =/= ( +g ` ndx ) <-> N =/= 2 ) |
9 |
4 8
|
mpbir |
|- ( E ` ndx ) =/= ( +g ` ndx ) |
10 |
5 9
|
setsnid |
|- ( E ` R ) = ( E ` ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
11 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
12 |
1 11
|
mgpval |
|- M = ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) |
13 |
12
|
fveq2i |
|- ( E ` M ) = ( E ` ( R sSet <. ( +g ` ndx ) , ( .r ` R ) >. ) ) |
14 |
10 13
|
eqtr4i |
|- ( E ` R ) = ( E ` M ) |