Metamath Proof Explorer


Theorem mgpplusg

Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014)

Ref Expression
Hypotheses mgpval.1
|- M = ( mulGrp ` R )
mgpval.2
|- .x. = ( .r ` R )
Assertion mgpplusg
|- .x. = ( +g ` M )

Proof

Step Hyp Ref Expression
1 mgpval.1
 |-  M = ( mulGrp ` R )
2 mgpval.2
 |-  .x. = ( .r ` R )
3 2 fvexi
 |-  .x. e. _V
4 plusgid
 |-  +g = Slot ( +g ` ndx )
5 4 setsid
 |-  ( ( R e. _V /\ .x. e. _V ) -> .x. = ( +g ` ( R sSet <. ( +g ` ndx ) , .x. >. ) ) )
6 3 5 mpan2
 |-  ( R e. _V -> .x. = ( +g ` ( R sSet <. ( +g ` ndx ) , .x. >. ) ) )
7 1 2 mgpval
 |-  M = ( R sSet <. ( +g ` ndx ) , .x. >. )
8 7 fveq2i
 |-  ( +g ` M ) = ( +g ` ( R sSet <. ( +g ` ndx ) , .x. >. ) )
9 6 8 eqtr4di
 |-  ( R e. _V -> .x. = ( +g ` M ) )
10 4 str0
 |-  (/) = ( +g ` (/) )
11 fvprc
 |-  ( -. R e. _V -> ( .r ` R ) = (/) )
12 2 11 eqtrid
 |-  ( -. R e. _V -> .x. = (/) )
13 fvprc
 |-  ( -. R e. _V -> ( mulGrp ` R ) = (/) )
14 1 13 eqtrid
 |-  ( -. R e. _V -> M = (/) )
15 14 fveq2d
 |-  ( -. R e. _V -> ( +g ` M ) = ( +g ` (/) ) )
16 10 12 15 3eqtr4a
 |-  ( -. R e. _V -> .x. = ( +g ` M ) )
17 9 16 pm2.61i
 |-  .x. = ( +g ` M )