Metamath Proof Explorer


Theorem mgptopn

Description: Topology of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mgpbas.1
|- M = ( mulGrp ` R )
mgptopn.2
|- J = ( TopOpen ` R )
Assertion mgptopn
|- J = ( TopOpen ` M )

Proof

Step Hyp Ref Expression
1 mgpbas.1
 |-  M = ( mulGrp ` R )
2 mgptopn.2
 |-  J = ( TopOpen ` R )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 eqid
 |-  ( TopSet ` R ) = ( TopSet ` R )
5 3 4 topnval
 |-  ( ( TopSet ` R ) |`t ( Base ` R ) ) = ( TopOpen ` R )
6 1 3 mgpbas
 |-  ( Base ` R ) = ( Base ` M )
7 1 mgptset
 |-  ( TopSet ` R ) = ( TopSet ` M )
8 6 7 topnval
 |-  ( ( TopSet ` R ) |`t ( Base ` R ) ) = ( TopOpen ` M )
9 2 5 8 3eqtr2i
 |-  J = ( TopOpen ` M )