| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhm0.z |
|- .0. = ( 0g ` S ) |
| 2 |
|
mhm0.y |
|- Y = ( 0g ` T ) |
| 3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 4 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 5 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 6 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
| 7 |
3 4 5 6 1 2
|
ismhm |
|- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` .0. ) = Y ) ) ) |
| 8 |
7
|
simprbi |
|- ( F e. ( S MndHom T ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` .0. ) = Y ) ) |
| 9 |
8
|
simp3d |
|- ( F e. ( S MndHom T ) -> ( F ` .0. ) = Y ) |