| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mhmcopsr.p |  |-  P = ( I mPwSer R ) | 
						
							| 2 |  | mhmcopsr.q |  |-  Q = ( I mPwSer S ) | 
						
							| 3 |  | mhmcopsr.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | mhmcopsr.c |  |-  C = ( Base ` Q ) | 
						
							| 5 |  | mhmcopsr.h |  |-  ( ph -> H e. ( R MndHom S ) ) | 
						
							| 6 |  | mhmcopsr.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | fvexd |  |-  ( ph -> ( Base ` S ) e. _V ) | 
						
							| 8 |  | ovex |  |-  ( NN0 ^m I ) e. _V | 
						
							| 9 | 8 | rabex |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } e. _V ) | 
						
							| 11 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 12 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 13 | 11 12 | mhmf |  |-  ( H e. ( R MndHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 14 | 5 13 | syl |  |-  ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 15 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 16 | 1 11 15 3 6 | psrelbas |  |-  ( ph -> F : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` R ) ) | 
						
							| 17 | 14 16 | fcod |  |-  ( ph -> ( H o. F ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` S ) ) | 
						
							| 18 | 7 10 17 | elmapdd |  |-  ( ph -> ( H o. F ) e. ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 19 |  | reldmpsr |  |-  Rel dom mPwSer | 
						
							| 20 | 19 1 3 | elbasov |  |-  ( F e. B -> ( I e. _V /\ R e. _V ) ) | 
						
							| 21 | 6 20 | syl |  |-  ( ph -> ( I e. _V /\ R e. _V ) ) | 
						
							| 22 | 21 | simpld |  |-  ( ph -> I e. _V ) | 
						
							| 23 | 2 12 15 4 22 | psrbas |  |-  ( ph -> C = ( ( Base ` S ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 24 | 18 23 | eleqtrrd |  |-  ( ph -> ( H o. F ) e. C ) |